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Abstract 

 

This paper has considered a risk measure ρ and a (maybe incomplete and/or imperfect) arbitrage-

free market with pricing ruleπ . They are said to be compatible if there are no reachable strategies 

y  such that ( )yπ  remains bounded and ( )yρ  is close to ∞− . We show that the lack of 

compatibility leads to meaningless situations in financial or actuarial applications. 

 The presence of compatibility is characterized by properties connecting the Stochastic 

Discount Factor ofπ  and the sub-gradient ofρ . Consequently, several examples pointing out that 

the lack of compatibility may occur in very important pricing models are yielded. For instance the 

CVaR and the DPT are not compatible with the Black and Scholes model or the CAPM. 

 We prove that for a given incompatible couple ( )ρπ ,  we can construct a minimal risk 

measure πρ  compatible withπ  and such that ρρπ ≥ . This result is particularized for the CVaR 

and the CAPM and the Black and Scholes model. Therefore we construct the Compatible 

Conditional Value at Risk (CCVaR). It seems that the CCVaR preserves the good properties of the 

CVaR and overcomes its shortcomings. 
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Introduction

General risk functions are becoming very important in finance and insurance. Since Artzner

et al. (1999) introduced the axioms and properties of the “Coherent Measures of Risk”

many authors have extended the discussion. The recent development of new markets and

products, the necessity of managing new types of risk, and the obligation of providing initial

capital requirements have made it necessary to overcome the variance as the most used risk

measure and to introduce more general risk functions.1 Hence, it is not surprising that the

recent literature presents many interesting contributions focusing on new methods for mea-

suring risk levels. Among others, Föllmer and Schied (2002) have defined the Convex Risk

Measures, Goovaerts et al. (2004) have introduced the Consistent Risk Measures, Rockafel-

lar et al. (2006) have defined the General Deviations and the Expectation Bounded Risk

Measures, and Brown and Sim (2009) have introduced the Satisfying Measures. Further

information about modern risk functions may be found in Balbás (2007).

Many classical actuarial and financial problems have been revisited by using new risk

functions. So, with regard to portfolio choice and asset allocation problems, amongst many

others authors, Alexander et al. (2006) compare the minimization of the Value at Risk

(V aR) and the Conditional Value at Risk (CV aR) for a portfolio of derivatives, Calafiore

(2007) studies “robust” efficient portfolios in discrete probability spaces, Mansini et al.

(2007) use general risk measures in portfolio theory and Schied (2007) deals with optimal

investment with convex risk measures.

1It has been proved that the variance is not compatible with the Second Order Stochastic Dominance

if asymmetries and/or heavy tails are involved (Ogryczak and. Ruszczynski, 1999).
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Pricing and hedging issues in incomplete markets have also been studied (Föllmer and

Schied, 2002, Nakano, 2004, Staum, 2004, etc.), as well as Equity Linked Annuities hedging

issues (Barbarin and Devolder, 2005) and Optimal Reinsurance Problems (Balbás et al.,

2009). However, several optimization problems involving risk functions become unbounded,

which does not make any sense in practical applications. It seems that this fact has not

been deeply analyzed in the literature until now.

The present paper simultaneously considers the pricing rule of the market and the risk

measurement procedure, and it points out that the “pathological” unbounded optimization

problems may arise due to some lack of compatibility between the pricing rule and the risk

function. In some sense, our major objective is to introduce and characterize the notion of

compatibility between prices and risks, as well as to recover it when it does not hold.

The article’s outline is as follows. Section 2 will present the notations and the general

framework we are going to deal with. The concept of compatibility will be introduced in

Section 3. We will consider a (maybe incomplete and/or imperfect) arbitrage-free market

with pricing rule Π and an expectation bounded risk measure ρ. They are compatible

if there are no reachable strategies y such that Π(y) is bounded and ρ (y) is close to

−∞ or, equivalently, there are no reachable strategies y′ such that ρ (y′) is bounded and

Π (y′) is close to −∞. We will show that he lack of compatibility leads to meaningless

situations in financial of actuarial applications. For instance, a manager could make the

capital requirements disappear, borrow as much money as desired, and simultaneously face

a riskless position, in the sense that the global risk of the strategy vanishes.

The most important result of this section is Theorem 4, which establishes that the necessary

and sufficient condition to ensure compatibility is the existence of Stochastic Discount

Factors of Π in the sub-gradient of ρ. Accordingly, we will present several examples pointing

out that the lack of compatibility may occur in very important pricing models. For instance,

it happens if the sub-gradient of ρ is composed of essentially bounded random variables and

the Stochastic Discount Factor (SDF ) is unbounded. Examples of risk measures satisfying

the condition above are, among others, the CV aR and the Dual Power Transform (DPT )

of Wang (2000). Examples of pricing models are, amongst others, the Black and Scholes

model and the Capital Asset Pricing Model (CAPM).

Section 4 is devoted to show that for a given incompatible couple (Π, ρ) we can construct
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a minimal expectation bounded risk measure M(Π,ρ) compatible with ρ and such that ρ ≤

M(Π,ρ). The most important result of this section is Theorem 7, whereM(Π,ρ) is constructed

and profoundly analyzed. The possible coherence of M(Π,ρ) for a coherent ρ is also studied.

We focus on concrete risk functions and pricing models on Section 5. In particular, we deal

with the CV aR, the DPT , and the Absolute Deviation, as well as with the CAPM and

the Black and Scholes model. For them all we analyze the extension M(Π,ρ), and point out

its major properties. Special attention is devoted to the CV aR because this expectation

bounded and coherent risk measure is becoming very popular among researchers, managers

a practitioners, due to its favorable properties. From the CV aR we apply the findings

of Section 4 so as to build the Compatible Conditional Value at Risk (CCV aR), a new

coherent and expectation bounded measure of risk compatible with the CAPM and the

Black and Scholes model. Hence, it seems that the CCV aR preserves the good properties

of the CV aR and overcomes its shortcomings.

Section 6 points out the most important conclusions of the paper.

2 Preliminaries and notations

Consider the probability space (Ω,F , µ) composed of the set of “states of the world” Ω, the

σ−algebra F and the probability measure µ. Consider also a couple of conjugate numbers

p ∈ [1,∞) and q ∈ (1,∞] (i.e., 1/p + 1/q = 1). As usual Lp (Lq) denotes the Banach

space of IR−valued random variables y on Ω such that IE (|y|p) <∞, IE () representing the

mathematical expectation (IE (|y|q) <∞, or y essentially bounded if q =∞). According to

the Riesz Representation Theorem, we have that Lq is the dual space of Lp.

Consider a time interval [0, T ], a subset T ⊂ [0, T ] of trading dates containing 0 and T ,

and a filtration of σ−algebras (Ft)t∈T providing the arrival of information and such that

F0 = {∅,Ω} and FT = F .

Let us assume that Y ⊂ Lp is a convex cone composed of super-replicable pay-offs, i.e., for

every y ∈ Y there exists at least one self-financing portfolio whose final pay-off is ST ≥ y.

Denote by S (y) the family of such self-financing portfolios, and suppose that there exists

Π(y) = Inf
{
S0; (St)t∈T ∈ S (y)

}
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for every y ∈ Y . We will say that Π (y) is the price of y. The market will be said to be

complete if for every y ∈ Lp there exists (St)t∈T ∈ S (y) such that ST = y, and incomplete

otherwise. Besides, the market will be said to be perfect if Y is a subspace of Lp and

Π : Y −→ IR is linear and continuous, and imperfect otherwise. In general, we will impose

the natural conditions, sub-additivity

Π (y1 + y2) ≤ Π(y1) + Π (y2) (1)

for every y1, y2 ∈ Y , and positive homogeneity

Π (αy) = αΠ (y) (2)

for every y ∈ Y and α ≥ 0. Consequently, Π is a convex function. Finally, we will assume

the existence of a riskless asset that does not generate any friction, i.e., almost surely

constant random variables y = k belong to Y for every k ∈ IR, and there exists a risk-free

rate rf ≥ 0 such that

Π (k) = ke−rfT (3)

holds. It is easy to see that (3) leads to

Π (y + k) = Π (y) + ke−rfT (4)

for every y ∈ Y and k ∈ IR. Indeed Π(y + k) ≤ Π(y) + ke−rfT is clear, and

Π(y) = Π (y + k − k) ≤ Π (y + k) + Π (−k) = Π (y + k)− ke−rfT

implies the opposite inequality.

Let

ρ : Lp −→ IR

be a general risk function that a trader uses in order to control the risk level of his final

wealth at T . Assume that ρ is continuous and satisfies:

a)

ρ (y + k) = ρ (y)− k (5)

for every y ∈ Lp and k ∈ IR.

b)

ρ (αy) = αρ (y) (6)
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for every y ∈ Lp and α > 0.

c)

ρ (y1 + y2) ≤ ρ (y1) + ρ (y2) (7)

for every y1, y2 ∈ Lp.

d)

ρ (y) ≥ −IE (y) (8)

for every y ∈ Lp.2

Particular interesting examples are the Conditional Value at Risk (CV aR) of Rockafellar

et al. (2006), the Dual Power Transform (DPT ) of Wang (2000) and the Wang Measure

(Wang, 2000), among many others. Furthermore, following the original idea of Rockafellar

et al. (2006) to identify their Expectation Bounded Risk Measures and their Deviation

Measures, it is easy to see that

ρ (y) = σ (y)− IE (y) (9)

is continuous and satisfies a), b), c) and d) if and only if σ : Lp −→ IR is a continuous

deviation, that is, if σ is continuous and satisfies b), c),

e)

σ (y + k) = σ (y)

for every y ∈ Lp and k ∈ IR, and

f)

σ (y) ≥ 0

for every y ∈ Lp.

Particular examples of deviation measures are the classical p−deviation given by

ρ (y) = [IE (|IE (y)− y|p)]1/p , (10)

2Actually, the properties above are almost similar to those used by Rockafellar et al. (2006) in order

to introduce their Expectation Bounded Risk Measures. These authors also impose a), b), c) and d), work

with p = 2, allow for ρ (y) =∞, and impose ρ (y) > −IE (y) if y is not constant.

6



or the downside p−semi-deviation given by

ρ (y) = [IE (|Max {IE (y)− y, 0}|p)]1/p , (11)

among many others.

Consider a continuous ρ satisfying a), b), c) and d). Denote by

∆ρ = {z ∈ Lq;−IE (yz) ≤ ρ (y) , ∀y ∈ Lp} . (12)

The set ∆ρ is obviously convex. Bearing in mind the Representation Theorem 2.4.9 in Za-

linescu (2002) for convex functions, and using a proof similar to that of the Representation

Theorem of risk measures stated in Rockafellar et al. (2006), it may be stated that ∆ρ is

also σ (Lq, Lp)−compact, the constant random variable 1 ∈ ∆ρ, and

ρ (y) =Max {−IE (yz) : z ∈ ∆ρ} (13)

holds for every y ∈ Lp. Furthermore,

∆ρ ⊂ {z ∈ Lq; IE (z) = 1} . (14)

Following Rockafellar et al. (2006), if ρ is continuous and satisfies Properties a), b), c) and

d) above then it is also coherent in the sense of Artzner et al. (1999)3 if and only if

∆ρ ⊂ Lq+ = {z ∈ Lq;µ (z ≥ 0) = 1} . (15)

Finally, by means of the Hahn Banach Separation Theorem, one may easily prove that if

∆ ⊂ Lq is convex and σ (Lq, Lp)−compact, 1 ∈ ∆, and ∆ satisfies (14), then there exists

a unique continuous ρ satisfying a), b), c) and d) such that (13) holds.

Summarizing, as indicating in the diagram below

Dµ � Mµ � Cµ

σ = ρ+ IE � ρ � ∆ρ

(16)

Expression (9) establishes a one to one bijection between the setMµ of continuous functions

satisfying a), b), c) and d) and the set Dµ of continuous functions satisfying b), c), e) and f),

whereas (13) (or (12)) establishes a one to one bijection between the setMµ and the set Cµ

of convex and σ (Lq, Lp)−compact subsets of Lq fulfilling (14) and containing the constant

random variable whose value is 1. The coherence of the risk measure is characterized by

the inclusion (15), and both identifications in (16) are increasing, i.e., higher deviations are

associated with higher risk measures and higher sets of Cµ.

3i.e., ρ (y1) ≥ ρ (y2) whenever y1, y2 ∈ L
p and y1 ≤ y2
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3 Compatibility between pricing rules and risk mea-

sures

This section will be devoted to introduce and characterize the notion of compatibility

between risk measures and pricing rules.

Definition 1 The pricing rule Π and the risk measure ρ ∈ Mµ are said to be compatible

if there are no sequences (yn)
∞

n=1 ⊂ Y such that Π(yn) ≤ 0 for every n ∈ IN and

Lim ρ (yn) = −∞ (17)

simultaneously hold. �

As some examples below will illustrate, the absence of compatibility may hold in practice.

Actually, if Π and ρ were not compatible, then every manager could make the capital

requirements become −∞, which does not make any sense in an economic framework. In

fact, suppose that the random variable y0 ∈ Y represents the value T of the portfolio traded

by the manager. Its final risk will be given by ρ (y0), which justifies that this quantity may

be an adequate final value (at T ) of the capital requirement.4 Indeed, (5) leads to

ρ (y0 + ρ (y0)) = 0

and the risk will vanish if the amount ρ (y0) e
−rfT is invested in the riskless security. But

(7) and the existence of the sequence (yn)
∞

n=1 ⊂ Y above imply that

ρ (y0 + yn) −→ −∞

while

Π (y0 + yn) ≤ Π (y0) ,

which means that no capital has to be added and the risk level may be reduced as desired

if the manager buys yn. Thus, the capital requirement ρ (y0) does not have to be added.

On the contrary, by adding yn the trader may even borrow an arbitrary amount of money

−ρ (y0 + yn) −→∞, since, according to (5),

ρ (y0 + yn + ρ (y0 + yn)) = 0.

4i.e., ρ (y) e−rfT should be the initial cash reserve (or capital requirement) invested in the risk-free asset.
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Analogously, the lack of compatibility would allow an arbitrary trader to borrow an un-

bounded amount of money without facing any risky position. Indeed, borrowing−ρ (yn) −→

∞ euros and buying yn for Π (yn) ≤ 0 euros would imply a global risk given by

ρ (yn + ρ (yn)) = 0,

that must be interpreted as a null level of risk.

Next we will show that the inequality Π (yn) ≤ 0 may be substituted by a more general

one.

Proposition 1 The pricing rule Π and the risk measure ρ ∈Mµ are not compatible if and

only if for every a ∈ IR there exists a sequence (yn)
∞

n=1 ⊂ Y such that Π (yn) ≤ a for every

n ∈ IN and (17) simultaneously hold.

Proof. Suppose that Π and ρ are not compatible and take the sequence (yn)
∞

n=1 ⊂ Y of

Definition 1. Then, (3) leads to

Π
(
yn + aerfT

)
≤ a,

while (5) leads to

ρ
(
yn + aerfT

)
= ρ (yn)− aerfT −→ −∞,

which completes the proof. �

Next let us prove that the risk measure and the pricing rule may interchange their roles in

Definition 1.

Proposition 2 The pricing rule Π and the risk measure ρ ∈Mµ are not compatible if and

only if for every a ∈ IR there exists a sequence (yn)
∞

n=1 ⊂ Y such that ρ (yn) ≤ a for every

n ∈ IN and

Lim Π(yn) = −∞

simultaneously hold.

Proof. If (yn)
∞

n=1 ⊂ Y satisfies the conditions above then (4) and (5) easily show that

(
yn − Π(yn) e

rfT
)∞
n=1

⊂ Y
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satisfies the conditions of Definition 1.

Conversely, if (yn)
∞

n=1 ⊂ Y satisfies the conditions of Definition 1 then (4) and (5) easily

show that

(yn + ρ (yn)− a)∞n=1 ⊂ Y

satisfies the conditions above. �

The interpretation of Propositions 1 and 2 seems to be clear. If Π and ρ are incompat-

ible then there is a significant lack of balance between prices and risks. This lack may

provoke pathological situations, as described above, that cannot be accepted in economic

applications.

Next we will attempt to characterize the notion of compatibility by means of practical

criteria. To this purpose we will consider the optimization problem






Min ρ (y)

Π (y) ≤ 0

y ∈ Y

. (18)

Problem (18) minimizes the attainable risk level with non-positive prices. Obviously, (18)

is bounded if and only if Π and ρ are compatible.

Problem (18) is not differentiable because ρ is not differentiable either. Recent literature

has developed several optimization methods that may solve this caveat (see, among others,

Ruszczynski and Shapiro, 2006). In this paper we will follow a procedure quite parallel to

that used in Balbás et al. (2009a) and (2009b), where the authors use risk measures and

deal with a mathematical programming problems related to actuarial and financial classic

topics. Some duality linked properties and Theorem 4 below will not be proved due to their

analogy with similar results of the mentioned papers.

In particular, bearing in mind (13) and following Balbás et al. (2009b), (18) is equivalent

to the infinite-dimensional linear optimization problem
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




Min θ

θ + IE (yz) ≥ 0, ∀z ∈ ∆ρ

Π (y) ≤ 0

θ ∈ IR, y ∈ Y

(19)

θ ∈ IR and y ∈ Lp being the decision variables. Furthermore, y ∈ Y solves (18) if and only

if there exists θ ∈ IR such that (θ, y) solves (19), in which case θ = ρ (y) holds.

Besides, following parallel developments to that presented in Balbás et al. (2009a), one can

show that Problem






Max 0

λΠ (y)− IE (yz) ≥ 0, ∀y ∈ Y

λ ∈ IR, λ ≥ 0, z ∈ ∆ρ

(20)

is the dual of (19), λ ∈ IR and z ∈ ∆ρ being the decision variables.

Proposition 3 If (λ, z) is (20)-feasible then λ = erfT .

Proof. Constraint

λΠ (y)− IE (yz) ≥ 0, ∀y ∈ Y

implies that IE (z) = λe−rfT , since we can take y = 1 and y = −1 and apply (3). Then (14)

leads to λ = erfT . �

As a consequence, (20) may be simplified to






Max 0

erfTΠ (y)− IE (yz) ≥ 0, ∀y ∈ Y

z ∈ ∆ρ

(21)

Finally, following Balbás et al. (2009a) and (2009b), there is no duality gap between (18)

and (21), and the following primal-dual relationship holds

Theorem 4 The three following conditions are equivalent:

a) Π and ρ are not compatible.
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b) Problem (18) is unbounded.

c) Problem (21) has no feasible solutions. �

Remark 1 Those elements satisfying the first constraint in (21) will be called Stochastic

Discount Factors (SDF ) of Π. Actually, this notion of SDF is less restrictive than the

usual one in Mathematical Finance (Duffie, 1988), since the classic framework takes p = 2

and a perfect market. However, it is worthwhile to point out that the classical SDF would

satisfy the first constraint in (21).

Notice that Theorem 2 indicates that Π and ρ are compatible if and only if there are SDF

of Π in the sub-gradient ∆ρ of ρ.

Finally, let us remark that for a perfect market the first constraint in (21) must also apply

if −y replaces y, which implies that the constraint may by given by

IE (yz) = erfTΠ (y) (22)

for every y ∈ Y . �

Corollary 5 Π and ρ are compatible if and only if

ρ (y) ≥ −Π(y) erfT (23)

for every y ∈ Y .

Proof. Suppose that Π and ρ are compatible and take a SDF z ∈ ∆ρ. Take y ∈ Y . Then

(13) and (23) imply that

ρ (y) ≥ −IE (yz) ≥ −erfTΠ (y) .

Conversely, suppose that (23) holds. Then Π (y) ≤ 0 obviously implies that ρ (y) ≥ 0.

Thus (18) cannot be unbounded, and Π and ρ are compatible. �

Example 1 (Example illustrating that the compatibility between pricing rules and risk mea-

sures is not guaranteed). Consider Ω = {ω1ω2}, µ (ω1) = 0.1, µ (ω2) = 0.9, and

Π(α (1, 1) + β (1, 0)) = α + 0.5β.
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The example indicates that the risk-free rate vanishes and the risky asset with pay-off (1, 0)

has a price equal to 0.5. Suppose that

∆ρ = {(z1, z2) ; 0.1z1 + 0.9z2 = 1 and 0 ≤ zi ≤ 2.5, i = 1, 2} .

According to Rockafellar et al. (2006) ∆ρ corresponds to the Conditional Value at Risk with

0.6 = 60% as the level of confidence. Notice that this simple model satisfies many “good

properties”. For instance, it is perfect and complete, and it is also arbitrage-free because

z1 = 5, z2 =
5
9

is a positive SDF (Duffie, 1988). However, the conditions defining the (21)-feasible set are






0.1z1 = 0.5

0.1z1 + 0.9z2 = 1

0 ≤ zi ≤ 2.5, i = 1, 2

and this set is obviously void. Thus, according to Theorem 4, we are facing incompatibility.

�

Proposition 6 Suppose that (18) (or (19)) is bounded. Then so is (21), every (21)-feasible

solution solves (21) and y∗ ∈ Y solves (18) if and only if Π (y∗) = 0 and ρ (y∗) = 0. In

particular, y∗ = 0 solves (18).

Proof. (21) must be bounded due to the classical relationships between primal and dual

problems (Luenberger, 1969). If y∗ ∈ Y solves (18) the absence of duality gap shows that

ρ (y∗) = 0. Let us prove Π (y∗) = 0. if Π (y∗) = −a < 0 then

Π
(
y∗ + aerfT

)
= 0,

whereas

ρ
(
y∗ + aerfT

)
= ρ (y∗)− a < ρ (y∗) ,

which implies that y∗ is not optimal and we have a contradiction.

Conversely y∗ ∈ Y , Π(y∗) = 0 and ρ (y∗) = 0 imply that y∗ is (18)-feasible and (18)

achieves its optimal value at y∗, so y∗ is optimal. �
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Remark 2 Example 1 points out that ρ and Π may be incompatible, but we can provide

more interesting examples. To this purpose, for 0 < µ0 < 1 define the V aRµ
0
of every

random variable y by (Balbás, 2007)

V aRµ0 (y) = −Inf {α ∈ IR; µ (y ≤ α) > 1− µ0} .

Since Lp ⊂ L1, suppose that ρ may be extended to the whole space L1. Important expectation

bounded risk measures satisfy this condition. Among others, the DPT of Wang (2000),

given by

DPTa (y) =

∫ 1

0

V aR1−t (y) g
′

a (t) dt (24)

for every y ∈ L1, a > 1 being an arbitrary constant and

ga : (0, 1) −→ (0, 1)

given by

ga (t) = 1− (1− t)a ,

the CV aRµ0 given by

CV aRµ0 (y) =
1

1− µ0

∫ 1−µ0

0

V aR1−t (y) dt

for 0 < µ0 < 1 and y ∈ L1, and the measure (9) if σ is the 1−deviation (or absolute

deviation) or the 1−down-side semi-deviation (or down-side absolute semi-deviation) (see

(10) and (11)). In such a case (12) points out that ∆ρ ⊂ L∞, and therefore the elements

in ∆ρ are essentially bounded. But there are many important pricing models in Financial

Economics whose SDF are not essentially bounded. For instance, the Black and Scholes

model, where the SDF is unique because the market is complete and it is unbounded too,

as pointed out in Wang (2000). Another important example is the Heston model, which

allows us to price derivatives in an stochastic volatility framework.5 �

4 Recovering compatibility

Since Example 1 and the previous remark show that compatibility may fail in very impor-

tant cases, it is natural to analyze whether modifications of the risk measure allow us to

recover some kind of balance.
5Notice that the SDF of Example 1 is in L∞, so there are much more cases generating incompatibility,

i.e., the given conditions are only sufficient.
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Theorem 7 Fix the pricing rule Π and a risk measure ρ ∈Mµ. Suppose that there exists

a continuous Π̃ : Lp −→ IR extending Π and satisfying (1) and (2). Then there exists

M(Π,ρ) ∈Mµ such that:

a) Π and M(Π,ρ) are compatible, and ρ ≤M(Π,ρ).

b) M(Π,ρ) is minimal, i.e., if Π and ρ̃ ∈ Mµ are compatible, ρ ≤ ρ̃ and ρ̃ ≤ M(Π,ρ) then

ρ̃ =M(Π,ρ).

c) Π and ρ are compatible if and only if M(Π,ρ) = ρ.

d)

M(Π,ρ) (y) ≥Max
{
−Π (y) erfT , ρ (y)

}

holds for every y ∈ Y .

e) If the market is perfect (i.e., if Π is linear and continuous) then

M(Π,ρ) (y) =Max
{
−Π (y) erfT , ρ (y)

}
(25)

holds for every y ∈ Y .

f) If the market is complete and perfect and the pricing rule Π is increasing then M(Π,ρ) is

coherent if and only if ρ is coherent.

Proof. Consider the subspace L ⊂ Y of Lp composed of the constant functions and

define f (k) = ke−rfT for every k ∈ L. Bearing in mind (3), Theorem 3.2 in Rudin (1972)

guarantees the existence of a linear function Λ : Lp −→ IR such that

Λ (k) = ke−rfT (26)

for every k ∈ L and

−Π̃ (−y) ≤ Λ (y) ≤ Π̃ (y) (27)

for every y ∈ Lp. The continuity of Π̃ and (27) obviously imply the continuity of Λ. Hence,

the Riesz Theorem guarantees the existence of z0 ∈ Lq such that Λ (y) erfT = IE (yz0) for

every y ∈ Lp. Thus, (27) shows that

IE (yz0) ≤ Π̃ (y) e
rfT (28)
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for every y ∈ Lp, and (26) shows that IE (z0) = 1 (k = 1).

It is easy to see that the set

∆̃ = {tz + (1− t) z0; 0 ≤ t ≤ 1, z ∈ ∆ρ}

is convex, σ (Lq, Lp)−compact, and is composed of random variables whose expectation is

one. Thus, ∆̃ ∈ Cµ.

Define

R =
{
z ∈ Lq; IE (z) = 1 and IE (yz) ≤ Π̃ (y) erfT ∀y ∈ Lp

}

and let us prove that

C∗µ = {∆ ∈ Cµ; ∆ ∩R �= ∅ and ∆ρ ⊂ ∆}

is inductive (with the opposite order, i.e., ∆1 ≥ ∆2 if ∆1 ⊂ ∆2). Indeed, ∆̃ ∈ C∗µ implies

that C∗µ is not empty, and the intersection of the elements in a chain of C
∗
µ is obviously

convex, σ (Lq, Lp)−compact, composed of random variables whose expectation equals one,

and contains ∆ρ. Moreover, this intersection has elements of R because R is (weakly∗)

closed, and a finite intersection in the chain obviously contains elements in R.

The Zorn’s Lemma implies the existence of a minimal element ∆ ∈ C∗µ such that ∆ ⊂ ∆̃.

According to (16) and (13) ∆ defines a risk measure M(Π,ρ) ∈ Mµ, and (13) and ∆ρ ⊂ ∆

imply that ρ ≤M(Π,ρ). Moreover b) holds because ∆ is minimal in C∗µ, and the identification

of (16) conserves the natural order.

Property c) trivially follows from a) and b) if one takes ρ̃ = ρ.

Property d) trivially follows from a) and Corollary 5. To see e), i.e., the opposite inequality

in a perfect market, fix y ∈ Y . ∆ ⊂ ∆̃ implies that

M(Π,ρ) (y) ≤Max
{
−IE (yz) : z ∈ ∆̃

}
.

Take z2 ∈ ∆̃ where the maximum above is reached and z1 ∈ ∆ρ and t ∈ [0, 1] such that

z2 = tz1 + (1− t) z0.

Since the market is perfect, (28) and (22) lead to

M(Π,ρ) (y) ≤ −tIE (yz1)− (1− t) IE (yz0)

≤ tρ (y)− (1− t)Π (y) erfT

≤Max
{
−Π(y) erfT , ρ (y)

}
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Finally, to see f), from (25) it trivially follows thatM(Π,ρ) is decreasing if so are −Π and ρ.

Conversely, if M(Π,ρ) is coherent then its associate set ∆ ∈ Cµ is composed of non-negative

random variables (see (15)), and therefore so is ∆ρ ⊂ ∆. �

Remark 3 Notice that the existence of the extension Π̃ above frequently holds. For in-

stance, if the market is perfect, i.e., if Y is a subspace and Π is linear and continuous,

then the existence of Π̃ follows from the Hahn Banach Theorem. On the other hand, if the

market is complete and perfect then Π will be increasing so as to prevent the existence of

arbitrage (Duffie, 1988), i.e., Property e) applies. �

5 Modified risk measures: The CCVaR

Now we are in a position to revisit Example 1 and those important cases of Remark 2.

With respect to Example 1, we are dealing with a complete market, so we can take Π̃ = Π in

the latter theorem. Thus we have a modified CV aR0.6 that we will denote by CCV aR(Π,0.6)

and will call “Compatible CV aR0.6”. It is a new risk measure that retrieves compatibil-

ity with the pricing rule. Therefore it prevents the unbalanced pathological situations of

Propositions 1 and 2. In some sense, the new risk measure retrieves some kind of balance

between the CV aR0.6 and the pricing rule.

Besides, according to (25)

CCV aR(Π,0.6) (α + β, β) =Max {−Π (α+ β, β) , CV aR0.6 (α + β, β)}

for every α, β ∈ IR, CCV aR(Π,0.6) ≥ CV aR0.6, CCV aR(Π,0.6) is expectation bounded and

coherent, and CCV aR(Π,0.6) and Π are compatible.

More generally we can take the general probability space (Ω,F , µ) and the general CV aR

measure ρ = CV aRµ0 , µ0 ∈ (0, 1) being the level of confidence. According to Rockafellar

et al. (2006) we have that

∆CV aRµ0 =

{
z ∈ L∞; IE (z) = 1, 0 ≤ z ≤

1

1− µ0

}
. (29)

Hence, bearing in mind (15), CV aRµ0 is a coherent and expectation bounded measure of

risk. This property have provoked that CV aRµ0 is becoming a very popular risk measure for
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both researchers and practitioners, and it has been used to revisit many classical financial

and actuarial problems (Alexander et al., 2006, Mansini et al., 2007, Balbás et al., 2009a,

etc.). However, since ∆CV aRµ0 ⊂ L∞ the caveat of Remark 2 applies, i.e., CV aRµ0 is

not compatible with the pricing rule of complete and perfect market models whose SDF

is unbounded (Black and Scholes model, Heston model etc.). Nevertheless, according to

Theorem 7, in these kind of models there is a minimal expectation bounded risk measure

CCV aR(Π,µ0) that will be called “Compatible CV aRµ0” and satisfies

CV aRµ
0
(y) ≤ CCV aR(Π,µ0) (y) (30)

for every y ∈ Lp,6

CCV aR(Π,µ0) (y) =Max
{
−Π (y) erfT , CV aRµ0 (y)

}
(31)

for every y ∈ Lp and CCV aR(Π,µ0) is coherent and compatible with the pricing rule of the

model.

There are perfect but incomplete arbitrage free pricing models such that the classical SDF

is also unbounded. The most important one, but not the only one, is the CAPM , where the

SDF is closely related to the Market Portfolio (Duffie, 1988). Since our concept of SDF

is strictly weaker than the classical one then the absence of elements in (29) satisfying (22)

is not guaranteed. However, it may hold, which makes the CV aRµ
0
a measure reflecting a

serious drawback. However, according to Theorem 7 and its remark, a Compatible CV aR

may still be defined, and it is a minimal expectation bounded risk measure that also satisfies

(30), and (31) holds for every reachable pay-off y. Moreover, CCV aR(Π,µ0) is compatible

with the pricing rule of the model, and, owing to Theorem 7c, CV aRµ0 is compatible with

the pricing rule if and only if CV aRµ0 = CCV aR(Π,µ0), which is consistent with (31) and

Corollary 5. Finally, the element z0 in the proof of Theorem 7 may be replaced by an

alternative element of Lq satisfying (22), that may be non-negative due to the absence of

arbitrage. Then, bearing in mind (15) and following the same proof as in Theorem 7, but

modifying the set C∗µ according to

C∗µ = {∆ ∈ Cµ; ∆ ⊂ Lq+, ∆ ∩R �= ∅ and ∆ρ ⊂ ∆} ,

Lq+ denoting the usual non-negative cone of L
q, CCV aR(Π,µ

0
) may be constructed in such

a way that it is also coherent.

6Actually, for the cited models p = 2.
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Let us remark that the role of the CV aR may be also played, amongst others, by the DPT

of (24) and the Absolute Deviation of (9) and (10) with σ = 1. Thus we can build the

Compatible DPT and the Compatible Absolute Deviation, denoted by CDPT and CAD.

Furthermore, as stated in Theorem 7, the construction above may also make sense for risk

measures that cannot be extended to L1.

6 Conclusions

This paper has considered an expectation bounded risk measure ρ and an arbitrage-free

market with pricing rule Π. They have been said to be compatible if there are no reachable

strategies y such that Π (y) is bounded and ρ (y) is close to −∞ or, equivalently, there

are no reachable strategies y′ such that ρ (y′) is bounded and Π (y′) is close to −∞. We

have shown that he lack of compatibility leads to meaningless situations in financial or

actuarial applications. For instance, a manager can borrow as much money as desired and

simultaneously face a riskless position. Furthermore, incompatibility makes it unbounded

several optimization problems with significant economic meaning.

Compatibility has been characterized by the existence of Stochastic Discount Factors

(SDF ) of Π in the sub-gradient of ρ. Hence, several examples pointing out that the

lack of compatibility may occur in very important pricing models have been yielded. For

instance, it happens if the sub-gradient of ρ is composed of essentially bounded random

variables and the SDF is unbounded. Examples of risk measures are, among others, the

CV aR and the DPT . Examples of pricing models are the Black and Scholes model, the

Heston model and the CAPM .

We have proved that for a given incompatible couple (Π, ρ) we can construct a minimal

risk measure M(Π,ρ) compatible with Π and such that ρ ≤ M(Π,ρ). This result has been

particularized for important risk functions and pricing models. In particular, we have dealt

with the CV aR, the DPT , and the Absolute Deviation, as well as with the CAPM and

the Black and Scholes model. For them all the extension M(Π,ρ) has been studied. Special

attention was devoted to the CV aR because this expectation bounded and coherent risk

measure is becoming very popular among researchers, managers and practitioners, due to its

good properties. From the CV aR we have constructed the Compatible Conditional Value
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at Risk (CCV aR), a new coherent and expectation bounded measure of risk compatible

with the CAPM and the Black and Scholes model. It seems that the CCV aR preserves

the good properties of the CV aR and overcomes its shortcomings. �
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