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e Abstract 

Bootstrap approximations to the sampling distribution can be seen as gen­
eralized statistics taking values in a space of probability measures. We first 
analyze qualitative robustness [in Hampel's (1971) sense] of these statistics 
when the initial estimators {Tn } (whose distributions we want to approxi­
mate using bootstrap resampling) are obtained by restriction from a statisti­
cal functional T defined for aH probability distributions. Whereas continuity 
of T turns out to be the natural condition to ensure qualitative robustness 
of {Tn }, we show that the uniform continuity of T is a sufficient condition 
for robustness of the bootstrap. This result applies to M-estimators. Next, 
we study asymptotic properties of the bootstrap.estimator for the infiuence e íunction T'(F; x) oí T at a distribution F and we prove that continuous 
Hadamard differentiability oí the operator F ...... T'(F;.) with respect to F 
is a natural condition to establish the validity oí bootstrap confidence bands 
íor this estimator. 

( Key words: Qualitative robustness, infiuence curve, bootstrap confidence 
bands, Hadamard differentiability. 
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1. INTRODUCTION 

The old idea of considering the estimators as restrictions of statistical ¡unc­
tionals, defined in the space of probability distributions, has proved to be 
extremely useful in mathematical statistics. We could mention three im­
portant applications: first, weak continuity of statistical functionals can be 
interpreted in terms of qualitative (infinitesimal) robustness of the corre­
sponding sequence of estimators (Rampel, 1971). Second, the existence of 
a directional derivative [infiuence curvej see Rampel et al. (1987)] of the 
functional aHows to define quantitative measures of robustness (gross-error 
sensitivity, local-shift sensitivity, rejection points). FinaHy, stronger differ­
entiability properties (Fréchet, Hadamard, von Mises derivatives) provide a 
standard methodology to study asymptotic distributions [see, e.g., Fernholz 
(1983)] . 

In bootstrap theory, the use of the functional approach has been focussed 
on the third point: Fréchet and Radamard derivatives have been employed 
in establishing asymptotic validity of the bootstrap [Parr (1985), Cill (1989), 
Arcones and Ciné (1992)]. In turn, this paper is concerned with the first two 
issues mentioned above: our aim is to provide results of qualitative robustness 
for the bootstrap (Section 2 below), and to build bootstrap confidence bands 
for the infiuence curve. 

In the sequel, Tn = Tn(X1, ... ,Xn ) will be (for aH n = 1,2, ) an estima­
tor taking values in RP (p ~ 1), defined on random samples X¡, ,Xn from 
a univariate distribution. Let (:F, dL ) be the space oí probability measures 
on R (the realline) endowed with the Lévy metric dL, which metrizes the 
weak convergence in:F [see Ruber (1981), p. 25]. 

We assume throughout that the sequence {Tn } is generated by a íunc­
tional T : V e :F 1----+ RP, in the sense that íor aH n and íor each sample 
X¡, ... ,Xn, we have Tn(X1, ,Xn) = T(Fn), where Fn is the empirical 
distribution assoeiated to X¡, ,Xn • Many usual estimators íulfil this con­
ditionj this is the case, íor instance, oí M- and L-estimators which will be 
considered below [see Ruber (1981 )]. By:Fn we will represent the set oí em­
pirical distributions oí order n in :F, that is, the set oí discrete probability 
measures in :F whose atoms have probabilities equal to l/n or to a multi­
pIe oí l/n. When convenient, sorne subsets En e :Fn will be identified with 
the corresponding set oí points in Rn, defined up to permutations oí the 
coordinates. Obviously, the domain V oí T has to include :Fn íor aH n EN. 
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For each F E F, the symbol'cn(F) (== 'cn(T; F)) stands for the sampling 
distribution of the statistic Tn(X1, •• • , X~) when the sample is drawn from 
F. For simplicity, we omit the reference to T when no confusion is possible. 

The bootstrap methodology [see, e.g., Efron (1982) for introductory back­
ground] essential1y consists in estimating 'cn(F) by 'cn(Fn); that is, the sam­
pling distribution of Tn under F is approximated by the corresponding one 
under Fn. In an analogous way, a general operator <p['cn(F)] could be esti­
mated by <p['cn(Fn)]. A random sample of size n drawn from the empirical 
distribution Fn will be denoted by Xi, . .. ,X~; the corresponding bootstrap 
empirical distribution is represented by}",;:. 

It is important to note that the bootstrap estimator 'cn( Fn) can be viewed 
as a generalized statistic, defined on the sample space and taking values in 
the space P of probability measures on :F(R'P) (= the space of probability 
distributions on R'P); in what fol1ows, P and F(R'P) are both endowed with 
the Prokhorov metric (denoted by dp in both cases). Recall that dp is defined 
by� . 

dp(P1 , P2 ) = inf{E> O : P¡(A) ~ P2(A') + E, VA E 8}, 

where A' is the union of open bal1s of radius E around points of A, and 
8 denotes the Borel O'-algebra where the probability measures PI and P2 

are defined. dp metrizes the weak convergence in the space of probability 
measures defined on any general Polish space [see Huber (1981)]. 

By 'c['cn(Fn)], we will represent the sampling distribution of the gener­
alized statistic 'cn (Fn) in P. So, 'c['cn(.Fn)] is an element of the space of 
probability measures P (which is also endowed with the Prokhorov metric). 

We use the metric dL in F, instead of dp , due to technical reasons that 
will be explained below. Anyway, this issue is not essential from a conceptual 
point of view. As we have indicated, both metrics define the same topology 
although the definition of dL (unlike that of dp ) is only meaningful on F and 
cannot be extended for probability measures on general spaces. Although we 
are considering throughout the standard form of the bootstrap, we believe 
that similar results could be obtained for the so cal1ed smoothed bootstrap, 
where the resampling is carried out from a smoothed version Fn (obtained, 
e.g. from a kernel estimator of the unknown density). 
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2.QUALITATIVE ROBUSTNESS OF BOOTSTRAP APPROXIMATIONS 

The concept of qualitative robustness [Rampel (1968, 1971)] formalizes 
the notion of robustness, against infinitesimal perturbations in the under­
lying model, for the case of parametric point estimates. The basic tool for 
this formalization is the concept of equicontinuity. More precisely, with the 
notation of Section 1, a sequence {Tn } of parametric estimates is said to be 
qualitatively robust at F E :F if the sequence of transformations (from F to 
F(Rl)) G 1---+ Ln(G) is asymptotical1y equicontinuous at F (Le., there exists 
no such that {Ln(G)}n~no is equicontinuous at F). There are other slightly 
different versions of this definition but aH of them correspond to the same 
basic idea. 

Rieder (1982) and Lambert (1982) have studied qualitative robustness in 
hypotheses testing. Boente, Fraiman and Yohai (1987) have considered the 
case of dependent observations. Cuevas (1988) has analyzed this concept 
in the context of abstract inference which concerns those inference problems 
whose sampling and/or parameter spaces are general (abstract) metric spaces. 
Our approach here is related to the latter perspective [see Grenander (1981)] 
since, as we mention aboye, we consider the bootstrap approximation Ln(Fn) 
as a generalized estimate taking values in F(Rl). This leads in a natural 
way to the foHowing 

DEFINITION 1. Given a sequence {Tn } of statistics generated by a 
statistical functional T, the sequence of bootstrap approximations {Ln ( Fn )} 

is said to be qualitatively robust at F when the sequence of transformations 
G 1---+ L[Ln(Gn)] is asymptoticaHy equicontinuous at F. 

We will obtain qualitative robustness of bootstrap approximations through 
uniform qualitative robustness of the sequence {Tn } : 

DEFINITION 2. {Tn } is uniformly qualitatively robust in a neighbor­
hood U(Fo) of Fo if there exists no E N such that for aH n ~ no and for aH 
e > O there exists 6 > Osuch that, for aH F E U(Fo) , 

It is known (Rampel, 1971) that ifT is continuous at Fo then the sequence 
{Tn } is qualitatively robust at Fo. We show next that uniform continuity of 
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T in a neighborhood of Fo is enough for {Tn } to be uniform1y qua1itative1y 
robusto 

THEOREM 1. If T is uniform1y continuous in a neighborhood U(Fo) 
of Fo then {Tn} is uniform1y qua1itative1y robust in U(Fo) . 

Proof. It is enough to show that for aH é > Othere exists h > Osuch that 
for aH F E U(Fo) there exists a sequence en e :Fn such that Fn(en) > 1 ­ é 

and for Hn E en and Gn E :Fn we have 

e 

e 

From Lemma 1 in Rampe1 (1971), it is straightforward to check that this 
imp1ies uniform qua1itative robustness. 

Let é > O. Since T is uniform1y continuous in U(Fo) , there exists ho > O 
such that for aH FE U(Fo) 

é 
dL(F, G) <ho =>1 T(F) - T(G) 1< 2' 

By the uniformity in F of Glivenko-Cantelli convergence for the Lévy metric, 
there exists no E N such that, for n > no, 

( 

for aH F E U(Fo). For n > no and F E U(Fo) , define en = {Hn E :Fn : 
dL(Hn, F) < ~}. Then, we have that Fn(en) > 1 ­ é together with 

e 

implies that 

( 
So, 
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e and the result follows. 

Now, we show that uniforrn qualitative robustness of the sequence {Tn } 

is enough to get qualitative robustness oI' {L:n(Fn)}. 

THEOREM 2. If� {Tn } is uniforrnly qualitatively robust in a neigh­C' 
borhood U(Fo) of Fo then the sequence of bootstrap estirnators of L:n(F) is 
qualitatively robust at Fo. 

Proof. Fix é > a. By the uniforrn robustness of {Tn } in U( Fo) , there 
exists 8 > a such that ddF,G) < 8 irnplies dp(L:n(F),L:(G)) < é, for all 

(� F E U(Fo) and for all n larger than sorne no. Take 81 = !. By unifor­
rnity of Glivenko-Cantelli convergence for the Lévy rnetric, if dL(Fo,G) < 81 

then dL(Fo,n, Gn ) < 8 alrnost surely for all n larger than sorne nI ~ no. 
From the uniform robustness of {Tn} it follows that dp(L:n(Fo,n),L:n(Gn)) < 
é (in F(RP)) almost surely for all n ~ nI. So, by Strassen's theorem, 
dp(L:(L:n(Fo,n)), L:(L:n(Gn))) < é, for all n 2: nI, and the result follows. e 

From both results, we get that uniform continuity of T in a neighborhood 
U(Fo) of Fo is a sufficient condition for qualitative robustness at Fo of boot­
strap approxirnations. Next, we show that this result is general enough to 
contain M-estimators. 

Let 'l/; be a non-decreasing function from n to n, taking positive and 
negative values. If F is a distribution function and AF(t) = In 'l/;(x -t)dF(x) 
is well defined, let . 

T(F) = ~(sup{t: AF(t) > a} +ínf{t: AF(t) < a}), 

e� when defined. The sequence {Tn } obtained from T is a sequence of M­
estimators of location. 

THEOREM 3. If 'l/; is bounded and AF(t) =ahas a unique solution for 
all F in a neighborhood U(Fo) then T is uniformly continuous in U(Fo) . 

c: Proof. We follow the proof of Theorem 1 in Deniau et al. (1977) to 
show that given é > awe cannot have IT(F) - T(G) 1> é and ddF, G) < 8 
for small enough 8 and some F EU(Fo) . If dL(F, G) < 8, by Strassen's 
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theorem, there exists a law Q on R} with marginals F and G such that 
Q{I x - y 1< 8} ~ 1 - 8. By definition of T(F) and T(G), for aH t > O , 

O ~ S(t) = f (1/J(x - T(F)) -1/J(y - T(G) + t)dQ(x,y) = SI + S2'JR) 

where 

SI = f (1/J(x - T(F)) - l/J(y - T(G) + t)dQ(x,y)
J{I:¡;-YI:56'} . 

and 
S2= f (1/J(x-T(F))-1f)(y-T(G) + t)dQ(x, y).

J{lx-YI>S} 

Assume T(G) ~ T( F) + e and take 8 < é and t ~ e - 8. Since I x - y I~ 8 
implies 

1/J(x - T(F)) -1/J(y - T(G) + t) ~ 1/J(x·- T(F)) -1/J(x + e - T(G)) ~ O, 

e it foHows that 

SI ~ f (1/J(x - T(F)) -1/J(x + e - T(G)))dQ = 
J{\x-YISS} 

= f (1/J(x - T(F)) -1/J(x +e - T(G)))dQ­J'R2 

- f (1/J(x - T(F)) -1/J(x + e - T(G)))dQ.
J{lx-YI>e5} 

The absolute value of the last integral aboye is bounded by 8sup I 1/J I and 
since AF(t) = O has a unique solution for aH F E U(Fo) , the first integral 
in the right hand side is strict1y positive. It follows that, for smaH enough 

( 8, S(t) is strict1y positive for O < t ~ e; - 8, which is not possible since 
S(t) ~ O for aH t > O. The same reasoning gives that T(G) ~ T(F) - e is 
not compatible with 

S'(r) = f (1/J(x - T(F)) -1/J(y -- T(G) - r))dQ(x,y) ~ O,J'R2 

( 
for aH r¿O, and the uniform continuity of T in U(Fo) foHows. 

Sorne remarks: 
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(a) Observe that qualitative robustness is a metric concept in the sense 
that, at least in principIe, it depends on the metrics considered in the spaces 
of possible underlying and sampling distributions. A natural criterion of 
homogeneity might advise to use the Prokhorov metric in both spaces. How­
ever, we have used the Lévy metric in :F due to the fact that the uniform 
convergence (required in the proof of Theorem 1 ) SUPF dL(Fn , F) ----+ O, a.s., 
holds for dL • We have not found a similar result for the Prokhorov metric. 

(b) The weak continuity of a statistical functional T is the natural suffi­
cient condition for the qualitative robustness of the associated sequence {Tn } 

of estimators. Theorem 2 provides a statistical interpretation for the weak 
uníform continuity of T. Moreover, Theorem 3 points out the remarkable fact 
that such uniform continuity is fulfil1ed by broad ~lasses of usual functionals. 

3. BOOTSTRAP CONFIDENCE BANDS FOR THE INFLUENCE CURVE 

The influence funetion [Hampel (1974), Hampel et al. (1987)] is already a 
standard tool in the current statistical theory and practice. Its definition is 
well-known: T'(F;x) = limf -+o+[T((1 - €)F + €f5x) - T(F)]/€, for each F E 
:F. We assume throughout the existence and finiteness of T'(F; x). When 
placed in an appropriate framework, the influence funetion is nothing but 
the integrand funetion arising in the expressions of the differentials used in 
the classical non-linear functional analysis [see, e.g., Kolmogorov and Fomin 
(1957)]. Its intuitive meaning and mathematical role are analogous to those 
of the gradient 'Vf for the finite-dimensional case f : Rn ----+ R. We will use 
Hadamard's concept of differentiability [for definitions, see Fernholz (1983) 
and Gill(1989)]. 

First recal1 that, in most cases, T'(F;;7:) must be considered as a popu­
lational quantity depending upon the underlying (unknown) distribution F. 
Hence, in practice, T'( F; x) has to be estimated from a sample Xl' ... , Xn of 
F. Typical1y, this is done by replacing F by Fn and approximating the lateral 
derivative at zero by a quotient of finite increments. The resulting estimate 
is called sensítívíty curve. Other useful finite-sample versions of T'(F; x) are 
the empírícal influence functíon, and the jackknífe approxímatíon [see Ham­
pel et al. (1987), p. 92]. These approaches are free of assumptions on the 
functional form of T'(Fj x), but, as a matter of fact, the explicit expression 
of the influence funetion is exactly known for broad classes of estimators. For 
instance, under sorne regularity hypotheses [see Deniau et al. (1917)] the 
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infiuence function for the M-estimators defined in Section 2 is given by 

T'(F' ) _ 1/J( x; T( F)),x - 8 •
- f 88 1/J(y; O)IY=T(F) dF(y) 

In the case of L-estimators, the infiuence function is [see Huber (1981), p. 
57] 

T'(F; x) = ¡X h'(y)m(F(y))dy -1:(1 - F(y))h'(y)m(F(y))dy. 
oo 

These important examples (as well as others which could be mentioned) sug­
e� gest the following simple idea: if the functional form of the infiuence function 

T'(F; x) is explicitiy known, it can be estimated in a natural way just in­
serting the empirical distribution Fn instead of the underiying F. Moreover, 
simultaneous confidence bands can be obtained by approximating the sam­
pling distribution of . 

e Dn = sup JñIT'(Fn ; x) - T'(F; x)1 
x 

by that of its bootstrap version 

D~ = sup JñIT'(F:; x) - T'(Fn ; x)l. 
x 

( 
The validity of such an approximation is established in the following 

THEOREM 4. Let VeR) (= V[-CXJ,oo]) denote the space of cad/ag 
(i.e. right continuous with left-hand limits) functions on 'R, endowed with 
the 11 . 1100 (essential supremum) norm. Let T : :F ----t 'R be a statistical 

( functional with associated inHuence functional T'( F; x). Assume that 
(i) For each F E :F, the inHuence function T'(F;.) belongs to V('R) (in 

particular, it is bounded). 
(ii) The inHuence functional T'(F;.) can be extended to the vector space 

9 ={,x(F - H) : F, H E :F,,x E 'R} and the transformation (from 9 to 
V('R)) H 1---+ T'(H; x) is continuously compact differentiable. 

( Then, the statistic Dn can be bootstrapped, in the sense that its bootstrap 
version D~ converges weakly (a.s.) to the same limit as Dn • 
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Proof. From Donsker Invariance Theorem, 

weakly in 'D('R), where BO is the Brownian bridge on [0,1] considered as a 
random element in 'D('R) [see, e.g. Pollard (1984, p. 97)]. The h - method 

( (as in Gill (1989)) gives that 

.;ñ(T'(Fn ;.) - T'(F; .)) -~w dT'(F; .)Bo(F), 

where dT'(F;.) is the Hadamard differential of T'. From the general result by 
Giné and Zinn (1990) on bootstrap of general empirical measures, we have 

( that 
.;ñ(F; - Fn ) --+ BO(F), 

weaklya.s. in 'D('R) and, again from Gill (1989) and hypothesis (ii), it follows 
that 

e .;ñ(T'(F:;.) - T'(Fn ; .)) ---+w dT'(F; .)BO(F) a.s. 

Now, since 11 . 1100 is continuous with respect to its own topology, by 
using the Continuous Mapping Theorem [see, e.g. Pollard (1984), p. 44], we 
conclude that Dn and D~ converge weakly a.s. to the same limit and the 
result follows. 

e 
Sorne remarks: 
(a) This result is nothing but a direct consequence of a recent gener­

alized version (Gill, 1989) of the classical h-method (see, e.g. Rao 1973) 
which is a standard tool to get asymptotic results in parametric inference. 
This generalization is very interesting from a mathematical point of view, e although it does not seem easy to find applications in the usual problems of 
non-parametric functional statistícs. The reason is that this technique only 
applies to estimates defined as restrictions of statistical functionals. In this 
respect, Theorem 4 can be seen as a natural example of application of this 
functional h-method. 

( (b) Note that the hypotheses of Theorem 4 are fulfilled by the infiuence 
operator of L-estimators; indeed, assuming that h' is integrable and m is 
continuously differentiable, one can check out that the expression for this 

10 

e 

e 



( 

c· 

e 

e 

e 

e 

( 

infiuence curve given above is just a composition of of continuously differen­
tiable operators: observe that the the transformation F 1---+ J:oo h'(y)F(y )dy 

is linear and continuous and, hence, differentiable. AIso, F ...... m(F()) is a 
differentiable map. 

(e) In those cases where the infiuence function T' (F; .) is not bounded, 
Theorem 4 still holds in order to provide eonfidence bands on compact inter­
vals [-M, M]. It would suffice to replace 1)(ft) by the corresponding space 
1)[-M,M]. 

(d) Theorem 4 gives further insight on the statistical meaning of func­
tional differentiation. Recall that the Fréchet differentiability of T is a natural 
sufficient condition to establish the asymptotic validity of the bootstrap for 
T(Fn ) (see, e.g. Parr (1985)). We have proved that continuous Hadamard 
differentiability of T allows to build bootstrap confidence bands for the in­
fiuence curve. 
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