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Abstract 

Copulas are extensively used for dependence modeling. In many cases the data does 
not reveal how the dependence can be modeled using a particular parametric copula. 
Nonparametric copulas do not share this problem since they are entirely data based. 

This paper proposes nonparametric estimation of the density copula for α-mixing data 

using Bernstein polynomials. We study the asymptotic properties of the Bernstein 
density copula, i.e., we provide the exact asymptotic bias and variance, we establish 
the uniform strong consistency and the asymptotic normality. 
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1 Introduction

The correlation coe¢ cient of Pearson, the Kendall�s tau, and Spearman�s rho are widely used to

measure the dependence between variables. Despite their simplicity to implement and interpret,

they are not able to capture all forms of dependence. The copula function has the advantage to

model completely the dependence among variables. Further, the above coe¢ cients of dependence

can be deduced from the copula. Thanks to Sklar (1959), the copula function is directly linked to the

distribution function. Indeed, the distribution function can be controlled by marginal distributions,

which give the information on each component, and the copula that captures the dependence

between components.

There are several ways to estimate copulas. First, the parametric approach imposes a speci�c

model for both the copula and marginal distributions. We estimate the parameters using the

maximum likelihood or inference function for margins. This approach is widely used in practice

because of its simplicity, see Oakes (1982) and Joe (2005) for details. Second, the semiparametric

approach assumes a parametric model for the copula and a nonparametric model for the marginal

distributions. This approach is studied by Oakes (1982), Genest and Rivest (1993), and Genest,

Ghoudi, and Rivest (1995). These methods are not e¢ cient since they involve two-step estimation.

To overcome this problem, Chen, Fan, and Tsyrennikov (2006) use the sieve maximum likelihood

estimation. Chen and Fan (2006) investigate the semiparametric approach for the estimation

of copula in the context of dependent data. In order to reduce dimensionality and to remove

the problem of boundary bias when the support of the variables is bounded, Bouezmarni and

Rombouts (2008) propose a semiparametric estimation procedure for a multivariate density with

a parametric copula and asymmetric kernels density estimators for the marginal densities. In this

paper, we are interested in a third way of estimating copula functions, which is nonparametric

estimation. This approach considers nonparametric models for both the copula and marginal

distributions. Deheuvels (1979) suggests the multivariate empirical distribution to estimate the

copula function. Gijbels and Mielniczuk (1990) estimate a bivariate copula using smoothing kernel

methods. Also, they suggest the re�ection method in order to solve the boundary bias problem of

the kernel methods. Chen and Huang (2007) propose a bivariate estimator based on the local linear

estimator, which is consistent everywhere in the support of the copula function. Rödel (1987) uses

the orthogonal series method. For independent and identically distributed (i.i.d.) data, Sancetta

and Satchell (2004) develop a Bernstein polynomial estimator of the copula function and �nd an

upper bound of the asymptotic bias and variance and the asymptotic normality of the Bernstein

density copula estimator.

In this paper, we consider ��mixing dependent data and propose nonparametric estimation of
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the density copula based on the Bernstein polynomials. We study the asymptotic properties of the

Bernstein density copula, i.e., we provide the exact asymptotic bias and variance, and we establish

the uniform strong consistency and the asymptotic normality of Bernstein estimator for the density

copula.

Motivated by Weierstrass theorem, Bernstein polynomials are considered by Lorentz (1953) who

proves that any continuous function can be approximated by Bernstein polynomials. For density

functions, estimation using the Bernstein polynomial is suggested by Vitale (1975) and with a slight

modi�cation by Grawronski and Stadtmüller (1981). Tenbusch (1994) investigates the Bernstein

estimator for bivariate density functions and Bouezmarni and Rolin (2007) prove the consistency

of Bernstein estimator for unbounded density functions. Kakizawa (2004) and Kakizawa (2006)

consider the Bernstein polynomial to estimate density and spectral density functions, respectively.

Tenbusch (1997) and Brown and Chen (1999) propose estimators of the regression functions based

on the Bernstein polynomial. In the Bayesian context, Bernstein polynomials are explored by

Petrone (1999a), Petrone (1999b), Petrone and Wasserman (2002), and Ghosal (2001).

This paper is organized as follows. The Bernstein copula estimator is introduced in Section 2.

Section 3 provides the asymptotic properties of the Bernstein density copula estimator, that is the

asymptotic bias and variance, the uniform strong consistency, and the asymptotic normality for

��mixing dependent data. Section 4 concludes.

2 Bernstein copula estimator

Let X = f(Xi1; :::; Xid)0 ; i = 1; ::; ng be a sample of n observations of �-mixing vectors in IRd, with
distribution function F and density function f . A sequence is �-mixing of order h if the mixing

coe¢ cient �(h) goes to zero as the order h goes to in�nite, where

�(h) = sup
A2Ft1(X); B2F1t+h(X)

jP (A \B)� P (A)P (B)j;

F t1(X) and F1t+h(X) are the �-�eld of events generated by fXl; l � tg and fXl; l � t+ hg, respec-
tively. The concept of �-mixing is omnipresent in time series analysis and is less restrictive than

� and �-mixing. The following condition requires an �-mixing coe¢ cient with exponential decay.

We assume that the process X is �-mixing such that

�(h) � �h; h � 1; (1)

for some constant 0 < � < 1.

According to Sklar (1959), the distribution function of X can be expressed via a copula:

F (x1; :::; xd) = C(F1(x1); :::; Fd(xd)); (2)
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where Fj is the marginal distribution function of random variable Xj = fX1j ; :::; Xnjg and C is

a copula function which captures the dependence in X. Deheuvels (1979) uses a nonparametric

approach, based on the empirical distribution function, to estimate the distribution copula. Using

Bernstein polynomials, to smooth the empirical distribution, Sancetta and Satchell (2004) propose

the empirical Bernstein copula which is de�ned as follows: for s = (s1; :::; sd) 2 [0; 1]d

Ĉ(s1; :::; sd) =
k�1X
�1=0

:::
k�1X
�d=0

Fn

�v1
k
; :::;

vd
k

� dY
j=1

p�j (sj); (3)

where k is an integer playing the role of the bandwidth parameter, Fn is the empirical distribution

function of X, and p�j (sj) is the binomial distribution function:

p�j (sj) =

�
k � 1
�j

�
s
�j
j (1� sj)k��j�1:

If we derive (2) with respect to (x1; :::; xd), we obtain the density function, say f(x1; :::; xd); of X

that can be expressed as follows:

f(x1; :::; xd) = (f1(x1)� :::� fd(xd))� c (F1(x1); :::; Fd(xd)) ;

where fj is the marginal density of the random variable Xj and c is the copula density. Hence, the

estimation of the joint density function can be done by estimating the univariate marginal densities

and the copula density function. In this paper, we estimate the copula density function using

Bernstein polynomials. Indeed, if we derive (3) with respect to (s1; :::; sd) we obtain the Bernstein

density copula:

ĉ(s1; :::; sd) =
1

n

nX
i=1

Kk(s; Si) (4)

where Si = (F1(Xi1); :::; Fd(Xid)) ;

Kk(s; Si) = k
d
k�1X
�1=0

:::
k�1X
�d=0

ASi;�

dY
j=1

p�j (sj);

and

ASi;� = 1fSi2B�g; with B� =

�
�1
k
;
�1 + 1

k

�
� :::�

�
�d
k
;
�d + 1

k

�
:

In what follows, we denote the multiple sums
k�1X
�1=0

:::

k�1X
�d=0

by
P
�. The Bernstein estimator for

the density copula function is simple to implement, non-negative, and integrates to one. Sancetta

and Satchell (2004) give the upper bounds of the bias and variance of the Bernstein copula density

estimator for i.i.d observations. In this paper, we provide the asymptotic properties of the Bernstein

copula density for �-mixing dependent data. For such data, we give the exact asymptotic bias and

variance, we prove the uniform almost sure (a.s.) convergence of the Bernstein density copula, and

we establish its asymptotic normality.

4



3 Main results

This section studies the asymptotic properties of the Bernstein density copula estimator. We �rst

show that the asymptotic bias of the Bernstein density copula estimator has a uniform rate of

convergence. Hence, asymptotically there is no boundary bias problem. Second, we provide the

exact asymptotic variance of the estimator in the interior region. Finally, we establish the uniform

strong consistency and the asymptotic normality of the Bernstein density copula estimator. We

start by studying the bias of the Bernstein density copula estimator. The following proposition

gives the exact asymptotic bias. To stress that the bandwidth depends on n, we replace k by kn.

Proposition 1 (Asymptotic Bias). Suppose that the density copula function c is twice di¤er-

entiable. Let ĉ be the Bernstein density copula estimator of c as de�ned in (4). Then, for

s = (s1; :::; sd) 2 (0; 1)d, if kn !1; we have

IE(ĉ(s)) = c(s) + k�1n 
�(s) + o(k�1n )

where


�(s) =
1

2

dX
j=1

(
dc(s)

dsj
(1� 2sj) +

d2c(s)

ds2j
sj(1� sj)

)
:

Proof. Using a second order Taylor expansion and various sums we have

IE(ĉ(s))� c(s) = kdn
X
�

�Z
B�

(c(u)� c(s))du
� dY
j=1

p�j (sj))

= kdn
X
�

(
dX
l=1

dc(s)

dul

Z
B�

(ul � sl)du
)

dY
j=1

p�j (sj))

+
kdn
2

X
�

8<:
dX

l 6=m

d2c(s)

duldum

Z
B�

(ul � sl)(um � sm)du

9=;
dY
j=1

p�j (sj))

+
kdn
2

X
�

(
dX
l=1

d2c(s)

du2l

Z
B�

(ul � sl)2du
)

dY
j=1

p�j (sj)) + o(k
�1
n )

=
1

2
k�1n

8<:
dX
j=1

dc

duj
(s)(1� 2sj) +

dX
j=1

d2c

du2j
(s)sj(1� sj)

9=;+ o(k�1n ):
The last equality is obtained by using the mean and variance of the Binomial distribution and the

fact that

kdn
2

X
�

8<:
dX

l 6=m

d2c(s)

duldum

Z
B�

(ul � sl)(um � sm)du

9=;
dY
j=1

p�j (sj)) = O(k
�d):
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Now, we compute the variance of the Bernstein density copula estimator. This is given by the

following proposition.

Proposition 2 (Asymptotic Variance). Let ĉ be the Bernstein density copula estimator of c as

de�ned in (4). Then, for s 2 (0; 1)d, under condition (1) and if n�1k�d=2n ! 0; we have

V ar(ĉ(s)) = n�1k�d=2n V (s) + o(n�1k�kn=2n )

where V (s) = (4�)�d=2 c(s)Qd
j=1(sj(1�sj))1=2

.

Note that the formula of the variance at s = 0 and s = 1 is given by Sancetta and Satchell (2004).

We see that the variance increases with dimension d and it increases near the boundary because of

the term (sj(1� sj))1=2 in the denominator of V (s).

Proof. We have

V ar(ĉ(s)) =
1

n
V ar(Kkn(s; Si)) +

2

n

n�1X
i=1

(1� n�1i)Cov ((Kkn(s; S1);Kkn(s; Si))) :

First, under condition (1) and using Billingsley�s inequality, Lemma (3.1) in Bosq (1996) and that

jjKkn(s; Si)jj1 = O(kd=2), we obtain

2

n

n�1X
i=1

(1� n�1i)Cov ((Kkn(s; S1);Kkn(s; Si))) = o(n�1kd=2n ):

Second,

1

n
V ar(Kkn(s; Si)) =

k2dn
n

X
�

V ar(ASi;�)

dY
j=1

p2�j (sj)

From Sancetta and Satchell (2004)

V ar(ASi;�) =
c( �1kn ; :::;

�d
kn
)

kdn
+ o(k�dn ):

Hence

1

n
V ar(Kkn(s; Si)) =

k2dn
n

X
�

�
c( �1kn ; :::;

�d
kn
)

kdn
+ o(k�dn )

� dY
j=1

p2�j (sj))

=
k2dn
n

"X
�2I
(:) +

X
�2Ic

(:)

#
� V1 + V2
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where

I =

�
� = (�1; :::; �d);

�����jkn � sj
���� < k��n ; j = 1; :::; d 1=3 < � < 1=2

�
:

Let�s start with the second term V2. By considering the notations m = sups(c(s)), and when v 2 Ic

this means that there exists d0, for 1 � d0 � d, elements of vj such that
��� �jkn � sj��� > k��n , we have

V2 =
X
�2Ic

�
c( �1kn ; :::;

�d
kn
)

kdn
+ o(k�dn )

� dY
j=1

p2�j (sj))

� mkdn
n

0BB@ d0Y
j=1

X
��� �jkn�sj���>k��n

p2�j (sj)

1CCA
0BB@ dY
j=d0+1

X
��� �jkn�sj���<k��n

p2�j (sj)

1CCA
� m

n
kd=2n

�
k�7=2 d0n

�
= o(n�1 kd=2n ):

For the last inequality, on the one hand, we use

X
j�j=kn�sj j>k��n

p2�j (sj) �

0@ X
j�j=kn�sj j>k��n

p�j (sj)

1A2

= O(k�4n ); from Lorentz (1953):

On the other hand, from Laplace�s formula we have

k
1
2
n p2�j (sj)

P�j (sj)
! 1; as kn !1

where

P�j (sj) =
k
1=2
n

2�sj(1� sj)

Z j+1
kn

j
kn

exp

�
� kn
sj(1� sj)

(t� sj)2
�
dt:

Let vj0 and vj00 be the smallest and the biggest integers such that j�j=k � sj j � k��. Using the

Laplace�s formula and the change of variables we getX
j�j=kn�sj j�k��n

p2�j (sj) � 1

2�sj(1� sj)

Z �j00
kn

�j0
kn

exp

�
� kn
sj(1� sj)

(t� sj)2
�
dt

=
k
�1=2
n

2
p
�sj(1� sj)

1p
2�

Z �j2

�j1

exp
�
�y2=2

�
dy

where �j1 =
q

2kn
sj(1�sj)

�
�j0
kn
� sj

�
and �j2 =

q
2kn

sj(1�sj)

�
�j00
kn
� sj

�
. Note that, when kn !1, then

j1 ! �1 and j2 ! +1, because sj � vj0=k � k��, vj00=k � sj � k��, and � < 1=2. Thus,X
j�j=kn�sj j�k��n

p2�j (sj) = O(k�1=2n ); as kn !1:
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Now, for V1

V1 =
k2dn
n

X
�2I

�
c( �1kn ; :::;

�d
kn
)

kdn
+ o(k�dn )

� dY
j=1

p2�j (sj))

=
kdn
n
c(s)

0@ dY
j=1

X
�2I

p2�j (sj)

1A+ o(n�1kd=2n ); because sj �
�j
kn

= n�1kd=2n (4�)�d=2
c(s)Qd

j=1(sj(1� sj))1=2
+ o(n�1kd=2n ):

For ��mixing dependent data, the uniform almost sure convergence of the Bernstein density

copula estimator is stated in the following proposition.

Proposition 3 (Uniform a.s. Convergence). Suppose that the density copula function c is twice

di¤erentiable and that fSig is an ��mixing sequence with coe¢ cient �(h) = O(�h), for some

0 < � < 1. Let ĉ be the Bernstein density copula estimator of c as de�ned in (4). Then, if kn !1

such that n�1=2kd=4n ln(n)! 0, we have

sup
s
jĉ(s)� c(s)j = O(k�1n + n�1=2kd=4n ln(n)); a.s.

Proof. From the bias term and under the assumption that c is twice di¤erentiable, we have

sup
s
jIE(ĉ(s))� c(s)j = O(k�1n ):

If we denote

Yn;i =
1

n
Kkn(s; Si);

then we can show that

R2(n) = sup
i
IEjY 2n;ij1=2 = O(n�1kkn=4n )

and jYn;ij � n�1kd=2n . Hence, under the above conditions on the bandwidth parameter and applying

Theorem (3.2) from Liebscher (1996) to Yn;i , we get

sup
s
jIE(ĉ(s))� c(s)j = O(n�1=2kd=4n ln(n)):

The next proposition establishes the asymptotic normality of the Bernstein density copula

estimator for ��mixing dependent data. This result can be applied in many contexts. We can use
it for example to build copula-based tests of goodness-�t and conditional independence.
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Proposition 4 (Asymptotic Normality). Suppose that the density copula function c is twice

di¤erentiable and that fSig is an ��mixing sequence with coe¢ cient �(h) = O(�h), for some

0 < � < 1. Let ĉ be the Bernstein density copula estimator of c as de�ned in (4). Then, if kn !1

such that kn = O(n2=(4+d)), we have

n1=2k�d=4n

ĉ(s)� c(c)� k�1n 
�(s)p
V (s)

! N(0; 1):

Remark that if we choose kn = O(n2=(4+d)), then the bias term disappears.

Proof. Based on Proposition (1), we need to show that

n1=2k�d=4n

 
ĉ(s)� IE(ĉ(s))p

V (s)

!
! N(0; 1); for s 2 (0; 1)d: (5)

If we denote

Yi =
Kkn(s; Si)� IE(Kkn(s; Si))p

V (s)
:

then  
n1=2k�d=4n

ĉ(s)� IE(ĉ(s))p
V (s)

!
= n�1=2k�d=4n

nX
i=1

Yi � n�1=2 In:

We follow Doob�s method to show the asymptotic normality for dependent random vectors, see

Doob (1953). We consider the variables Vi = k
�d=4
n (Y(i�1)(p+q)+1 + � � � + Yip+(i�1)q) and V �i =

k
�d=4
n (Yip+(i�1)q+1 + � � �+ Yi(p+q)). For r(p+ q) � n � r(p+ q + 1),

In =
rX
i=1

Vi +
rX
i=1

V �i + k
�d=4
n

nX
i=r(p+q)

Yi: (6)

We can show that

n�1=2

0@ rX
i=1

V �i + k
�d=4
n

nX
i=r(p+q)

Yi

1A P�! 0:

Indeed, if we choose r � na; p � n1�a; andq � nc, where 0 < a < 1 and 0 < c < 1� a, we get

n�1 V ar

 
rX
i=1

V �i

!
= O(na+c�1); and n�1k�d=2n V ar

0@ nX
i=r(p+q)

Yi

1A = O(na�1):

The two last terms in the right side of (6) are asymptotically negligible.

Now, we show that Vi are asymptotically mutually independent. Let Ui = exp(itVi) which is F ji -

measurable, where i = (i� 1)(p+ q) + 1 and j = ip+ (i� 1)q, hence from Volkonski and Razanov
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(1959) �����IE
 
exp

 
it

rX
i=1

Vi

!!
�

rY
i=1

IE(exp(itVi))

����� � 16(r � 1)�(q + 1):
Lastly, we employ the Lyapounov�s theorem for the asymptotic normality of n�1=2

Pn
i=1 Vi. If we

choose a > d+2
d+4 , we obtain,

rX
i=1

IE(jVij3)

(r var(V1))3=2
� jjVijj1(r var(V1))�1=2

� p k�d=4n jjKkn(s; t)jj1 (r var(V1))�1=2

= O(n
d+2
d+4

�a) = o(1) because jjKkn(s;Xi)jj1 = O(kd=2):

4 Conclusion

A nonparametric Bernstein polynomial-based estimator of density copula for dependent data is

provided. The proposed estimator can be applied in several contexts, and we can use it to build

copula-based tests of, for example, goodness-�t and conditional independence, see Bouezmarni,

Rombouts, and Taamouti (2008). We provide the exact asymptotic bias and variance of the Bern-

stein copula density estimator and we establish its uniform strong consistency, and the asymptotic

normality. Our results can be extended to the right censored data using smoothed Kaplan-Meier

estimator instead of the empirical distribution function. A bandwidth choice in practice remains

an open question and existing methods like cross-validation can be investigated.
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