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Abstract 
 
 
In this paper several definitions of probabilistic causation are considered, and their main 
drawbacks discussed. Current notions of probabilistic causality have symmetry limitations (e.g. 
correlation and statistical dependence are symmetric notions). To avoid the symmetry problem, 
non-reciprocal causality is often defined in terms of dynamic asymmetry. But these notions are 
likely to consider spurious regularities. In this paper we present a definition of causality that does 
not have symmetry inconsistencies. It is a natural extension of propositional causality in formal 
logics, and it can be easily analyzed with statistical inference. The modeling problems are also 
discussed using empirical processes. 
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INTRODUCTION

The aim of science is first to determine whether a set of axiomatic events or propositions can

be accepted as true, and then to derive the validity of more complex facts establishing causality

relationships. As Wold (1954) pointed out: “The concept of causality is indispensable and funda-

mental to all sciences”. But these axiomatic events and causal implications can be deterministic

(invariable) regularities or be defined in terms of indeterministic (probabilistic) regularities. Proba-

bilistic causality is a difficult topic, involving the controversial issues of certainty (irrevocability) of

a cause-effect relationship, and the connection of causality with theories of induction.

In “formal logic” (in the deterministic context), a proposition A causes B if when A is true then

B is also true, and we denote this fact by A⇒ B. Another expression for “A causes B” is that B is

necessary for A. It is also said that both propositions are equivalent when A⇒ B and also B ⇒ A,

and this is denoted by A ⇔ B. It means that, by definition, causality is an asymmetric concept,

and symmetry results into equivalence. Earman (1986) provides an introduction to determinism

in physics. A drawback of this causality definition is that it cannot be applied to indeterministic

contexts. Bertrand Russel (1913, 1948) criticised the deterministic concept of causation. He argues

that the world is complex, and even though causal laws might hold true, they often fail because of

preventing circumstances, and the fact that it is impractical to bring in innumerable “unless” clauses.

But, in spite of the high complexity in the world, there are also causal lines of quasi-permanence

that warrant our inferences. For instance, the statement “smoke causes lung cancer” is false when

the logical definition is used, but we can find empirical regularities suggesting this effect, see e.g.

Suppes (1970). Causality relationships are usually due to a constellation of factors that are jointly

sufficient for B, where A is a relevant causal factor but not sufficient to ensure B. The complexity of

the surrounding factors can be addressed by probability theory. For a discussion of indeterminism

and causation see Humpreys (1989).

According to the Stanford Encyclopedia of Philosophy, “Probabilistic Causation” designates a

group of philosophical theories that aim to characterize the relationship between cause and effect

using the tools of probability theory. The central idea behind these theories is that causes raise the

probabilities of their effects, ceteris paribus. This idea has been formalized in a variety of definitions,

but often they are affected by symmetry (e.g., a high correlation between two random variables is

a symmetric notion). To reduce the symmetry problem, some of these causality notions have been

modified introducing conditional probabilities to some specific event. But these refinements are
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not entirely satisfactory. Mackie (1974), Lewis (1986), and Hausman (1998) discuss different issues

about asymmetry of causation.

To avoid symmetry, some philosophers have defined causality from a dynamic perspective , arguing

that causes are invariably followed by their effects and therefore causation should be considered in

terms of stable patterns of succession (see e.g. David Hume, 1748, section VII.) Following Hume,

some proponents of probabilistic theories of causation have identified causal direction with temporal

direction. But, a definition of causality based on dynamic regularities is likely to consider spurious

regularities. For example, we observe that lightning is often followed by thunder, but the first does

not cause the second, both are simultaneously caused by the same electric phenomena. However, even

using dynamic specifications we can find vicious circularities (symmetries) that have to be avoided

by ruling out the possibility of backwards-in-time causation a priori. Even without backwards-

in-time causation, spurious associations are relevant (e.g., the sustained increment in atmospheric

carbon dioxide during the last century correlates with posterior earth average warming which is often

interpreted as a causal effect and explained using a greenhouse analogy, whereas for other authors

it is a spurious association and the global warming trend marks the arrival of a glaciation period).

Besides, the logical notion A⇒ B does not require the use of time, and we should require the same

generality for any valid definition of probabilistic causation.

Overall, the current definitions of probabilistic causation can be objected, because they lack a

sound logical basis, and/or involve symmetry (e.g., statistical dependence), and/or time-delay re-

quirements which limit the general applicability. Probabilistic causality is still an undefined concept.

However, it has a crucial relevance for scientists. The falsificationist theory of Karl Popper considers

that a physical theory can be falsified if it can be rejected based on contradiction with empirical ob-

servation. In a deterministic context a simple counterexample can be used to reject a causal theory,

but not in the context of probabilistic causality. Without a valid theory of probabilistic causality,

empirical induction cannot give scientists clear rules to reject causal relationships.

This paper proposes a probabilistic theory of causation which does not suffer from any of these

drawbacks. The rest of the paper is organized as follows. In section 2 the previous developments

on probabilistic causation are discussed. In section 3, I propose a new concept of probabilistic

causation, based on logic that is not affected by symmetry or time delay requirements, and consider

asymptotic forms of causation. Section 4 introduces the empirical analysis of probabilistic causation.

In Section 5 I present central concepts relating modelling causal analysis and statistical inference. In

the concluding remarks section, I discuss how causal relationships can be used for optimal decision
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making.

LITERATURE REVIEW

The idea behind the probabilistic causation theories is that, ceteris paribus causes raise the prob-

abilities of their effects. This basic idea is generally formalized using conditional probabilities. Let

(Ω,F , P ) be a probability space. For any sets A,B ∈ F with P (B) > 0, the conditional probability
is defined as P (A|B) = P (A ∩B) /P (B) . Here we consider the probability function as a mathe-
matical object satisfying the Kolmororov axioms. It might be interpreted as a personal degree of

belief (often based on previous empirical analysis), or as a propensity law of physical events (Pop-

per, 1983) that can be estimated using frequency limits (as considered by von Mises 1939), but the

specific interpretation has little relevance for our purposes (for a discussion see, e.g. Dawid, 2004).

The first definition of probabilistic causation, known as “Probability-Raising” (PR), considers

that A causes B, where 0 < P (A) < 1, if and only if

P (B|A) > P (B|Ac) (1)

where Ac denotes the complement of the set A, see Suppes (1970). It is equivalent to P (B|A) >
P (B)1 , and also to the property of positive statistical dependence P (A ∩B) > P (A)P (B). If

the last inequality is reversed the events show negative statistical dependence, and if an equality

holds the events are statistically independent. Clearly, the PR notion of causality introduces some

flexibility on the deterministic formulations, but it is perfectly symmetric (if A causes B in a PR

sense, then also B causes A in a PR sense). In other words, this formulation is closer to equivalence

rather than causation.

Furthermore, PR is sensitive to spurious causality. If A and B are both caused by some third

factor C ∈ F , then it may be that P (B|A) > P (B|Ac) even though B does not cause A, since A

and B are positive dependent and simultaneously caused by C. Hans Reichenbach (1956) suggested

the idea of “screening off” to apply to a particular type of probabilistic relationship. Given three

sets A,B,C ∈ F and P (A ∩ C) > 0, then C is said to screen A off from B if

P (B|A ∩C) = P (B|C)
1P (B|A) > P (B|Ac)⇔ P (B|A)P (Ac) > P (B|Ac)P (Ac)⇔
P (B|A) (1− P (A)) > P (B|Ac)P (Ac)⇔ P (B|A) > P (B|A)P (A) + P (B|Ac)P (Ac) = P (B)

4



which means that C renders B irrelevant to A in probabilistic terms. (In fact, this is equivalent to

“conditional statistical independence” P (A ∩B|C) = P (A|C)P (B|C) between A and B). Using

this notion, we can define the ‘no screening off’ probabilistic causation, using the probability raise

condition P (B|A) > P (B|Ac) together with the condition that there is no C that screens A off

from B.

But the ‘no screening off’ condition is not sufficient to solve the spurious causality problem, since it

just eliminates events C that conditionally make A and B statistically independent. But there might

be other events C such that P (A ∩B|C) > P (A|C)P (B|C) (or the opposite) that cause both A

and B. Due to the “Simpson’s Paradox,” we may have that P (B|A) > P (B|Ac) with probabilistic

inequalities reversals P (B|A ∩ C) < P (B|Ac ∩ C) and P (B|A ∩ Cc) < P (B|Ac ∩Cc) for some C.

Alternatively, other authors have considered causality conditional to some specific situation, to

express that A raises the probability of B under some specific event C ∈ F , called “test situation”,
with P (A ∩ C) > 0 so that P (B|A ∩ C) > P (B|Ac ∩ C) . Often, this condition is required for all
the event C in a class of test situations. For a review of this literature, see Cartwright (1979),

Skyrms (1980), Eells (1991, chapters 2, 3, and 4) and Hitchcock (1993). But the definition of test

situations introduces substantial complexity, and it does not solve the symmetry problem.

All the considered refinements of PR causation are based on (1), and therefore are affected by

symmetry. More complex formulations of causality have been proposed to introduce asymmetries

with little success, see e.g. Reichenbach (1956), Price (1991), Arntzenius (1993), Papineau (1993),

and Hausman (1998). Other authors suggest that the necessary asymmetry is provided by our per-

spective as agents, see e.g. Price (1991). For instance, simple regression analysis is often interpreted

in terms of causality by some researchers, even though correlation is a bi-directional relationship.

A useful argument in logic to establish causal relationships is the “reductio absurdum” equivalence

that states: A ⇒ B if and only if no − B ⇒ no − A. Some authors consider the “counterfactual

causality”, where causality is defined using the idea that A causes B if the probability that A does

not occur is higher with B than it would be if B had not happened, i.e.

P (Ac|B) > P (Ac|Bc)

or equivalently P (A|Bc) < P (A|B), for a review see Lewis (1986), Noordhof (1999), and Kvart

(1997). But probabilistic counterfactual causality is actually equivalent to positive dependence2,

and therefore to PR causality, so that it is still affected by symmetry.
2P (A|Bc) < P (A|B)⇔ P (A|Bc)P (Bc) < P (A|B)P (Bc)⇔ P (A|Bc)P (Bc) < P (A|B) (1− P (B))⇔
P (A|Bc)P (Bc) + P (A|B)P (B) < P (A|B)⇔ P (A) < P (A|B)⇔ P (A ∩B) > P (A)P (B)

5



Alternative notions of probabilistic causality have been considered in the statistical literature,

usually introducing random variables. In this setting, a measurable event A with 0 < P (A) < 1

causes a random vector Y if the conditional probabilities satisfy that

P (Y ∈ B|A) 6= P (Y ∈ B|Ac) (2)

for some measurable set B. Testing non-causality means using data to decide if the null hypothesis

H0 : supy |F (y|A)− F (y|Ac)| = 0 is true, where F (y) is the cumulative probability distribution of
Y. In practice, a weaker property is usually studied, such as the homogeneity of conditional means

H0 : E (Y |A) = E (Y |Ac), i.e.

H0 : E (Y |d = 1)−E (Y |d = 0) = 0, (3)

where d = I (A) and I (A) is the indicator function of the set A. In empirical applications, the

null hypothesis can be tested using ANOVA and MANOVA methods. If additional regressors Z

are included, the null hypothesis H0 : P (E (Y |d = 1, Z) = E (Y |d = 0, Z)) = 1 can be tested with
ANACOVA methods under linearity. As a consequence, (static) non-causality is often discussed

using heterogeneity of linear regression models. In experimental settings, the regressors are dummy

variables associated to some treatment, and the regression coefficients are interpreted as potential

effects on the dependent variable. The significant heterogeneity of coefficients in the regression

model is interpreted as a proof of causation, moving interpretations from association (correlation or

statistical dependence) to causation. For an introduction to experimental design see Cochran and

Cox (1957). The experimental analysis is the cornerstone of manipulability theories of causation

considered by Gasking (1955), Collingwood (1940), vonWright (1971), and Menzies and Price (1993),

and Sobel (1998). Pearl (1995) considers graphic structures to depict these causal relationships. More

in general, a linear regression relationship between two random vectors X,Y is a model for linear

association Y = ΠX + v. Although the variables Y are often called endogenous, they are chosen

by the researcher who could similarly regress X with respect to Y . Correlation, means dependence,

and statistical dependence are essentially concepts of symmetric association and do not constitute

a valid setting for causal analysis.

Some authors use even more dubious notions of probabilistic causality based on Simultaneous

Equation Models (SEM), also known as structural models. These models were developed by econo-

metricians in the 1940s (driven by the “Cowless Commission for research in Economics” and building

on Haavelmo’s work), to estimate the parameters in economic models whose equilibrium is deter-

mined by a system of equations conditional on exogenous elements. In essence, these models specify
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a covariance structure. Structural models and the related path analysis, are nowadays commonly

used to justify causality claims in social sciences, see e.g. Sobel (1995). SEM postulated relationships

between variables in a vector Y ∈ RG conditionally on certain environmental variables X ∈ RK ,
assuming a parametric relationship g (Y,X, θ0) = ε where some assumptions are considered about

the conditional distribution of ε|X, typically E [ε|X] = 0 and V ar [ε|X] = Σ. For example, the
linear SEM is given by the linear system

BY +CX = ε.

A structural model is well defined only if there is a locally unique relationship that can be regarded

as an inverse of the model Y = f (X, ε, β0) known as the reduced form, and θ0 can be obtained from

β0. In the linear SEM, for example, if rank(B) = G (⇔ det (B) 6= 0) we can write the model as

Y = ΠX + v, where Π = −B−1C and v = B−1ε so that Ω = E [vtv
0
t] = B−1ΣB−10. This model is

known as the reduced form associated with the structural form.

Typically the square matrix B is normalized to have ones in the main diagonal, and the other

coefficients in BY +CX = ε are often (wrongly) interpreted in terms of static causality. For example,

if B is a triangular matrix some authors interpret the relationship as a chain of successive effects.

A path analysis figure is often drawn depicting the linear SEM structure. This figure displays the

variables Y,X and a flow diagram of causal effects in the form of arrows connecting variables related

by non-null coefficients in B, C. I denote Bi,j the coefficient (i, j) in the matrix B and similarly for

Ci,k in C, then if Bi,j 6= 0 and Bj,i 6= 0 a double headed arrow connect Yi and Yj , replaced by a

single headed arrow if one of these coefficients is zero, and if Ci,k 6= 0 a single headed arrow follows
from Xk to Yi. The use of graphical models for drawing causal relationships, based on ideas of Sewal

Wright back in the 1920s, is extensive in social sciences after the work of Dudley Duncan (1966),

see Whittaker (1990).

Structural models are not identified. Given any multiequation regression model, Y = ΠX + v,

with E [Xv] = 0 and E [vv0] = Ω, if we multiply the model by an arbitrary non-singular matrix B

we obtain BY +CX = ε with Σ = BΩB0 and Π = −B−1C. Since there are infinitely many regular
matrices B, we can obtain infinitely many structural forms associated to a multiequation regression

model. From another perspective, if we take an arbitrary factorization Ω = ΨΣΨ0 where Ψ has

complete rank and Σ is symmetric and positive definite (e.g. we can use a Choleski decomposition,

obtaining a lower triangular structural form — a procedure popularized by Chirstopher A. Sims,

and/or combine it with a permutation matrix to reorder the path arrows), then multiplying the
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reduced form by B = Ψ−1 we can define a structural form whose perturbations have covariance

matrix Σ . Therefore, the concept of structural form has little meaning from a statistical point of

view.

To solve the ambiguity of structural models, it is necessary to assume some identification con-

straints W (B,C, Σ) = 0, which are an arbitrary choice of the researcher based on his theoretical

dogma. The SEM is identified if the system W (B,C, Σ) = 0, BΠ + C = 0, Ω = B−1ΣB−10

has a unique solution {B,C,Σ}. The output is somewhat arbitrary. For instance, we can identify
the structural form {B,C,Σ} by requiring that Bi,j = 0, or a reciprocal effect Bj,i = 0, or even

Bi,j = −Bj,i meaning that both variables are affected by identical opposite structural relationships.

Any choice has nothing to do with the causal laws in nature. Several authors (e.g., Cliff 1983,

Holland 1988) have criticized the use of structural models to infer causation. Simultaneous equation

models are artificial structures identified from the reduced form regression. Yet, we observe too of-

ten that research articles using regression models are rejected in social sciences because endogeneity

was not taken into account. Structural forms can be a convenient method for adjusting theoretical

models (with static-interactions) to empirical data, provided that the model is rich enough to ensure

the identification of the parameters (setting additional constraints). But we cannot test if the model

“is correct”, nor can we interpret the coefficients in B, C (nor the coefficient signs) in terms of

“causality”. The ambiguities are even bigger with nonlinear structural models, where identification

is often a local concept.

As if the subjectivity of SEMs was not important enough, some researchers (considering high

dimensional vectorsX,Y ) combine ideas from structural models and factor analysis, see e.g. Jöreskog

(1973, 1978) and Bollen (1989). In particular, factor structural models, consider that Bη+Cξ = ε,

where η and ξ are unobserved latent variables called “constructs”, which are given by the factor

model Y = ΛY η + ε, X = ΛX ξ + δ. Factor structural models are extremely ambiguous, usually

identified by setting some rotation for the latent factors along with the structural identification

assumptions. The resulting output is so ambiguous for the practitioner, that any result can be

obtained, provided that we devote enough time to estimate under different identification schemes.

Yet, causal relationships conclusions drawn from these models pervade some social sciences, enhanced

by computer-friendly software such as LISREL, EQS or AMOS.

Some authors have proposed probabilistic theories of causation based on the idea that causes

usually precede their effects in time, and the notion of dynamic causality can be applied only to

cause-effect relationships that take place along some time horizon. But this idea in unrelated with
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the causality concept in formal logic. Suppes (1970, chapter 2) and Eells (1991, chapter 5) define

causal asymmetry in terms of temporal asymmetry, using time as a kind of test situation. Dynamic

causality has been also approached by models based on automated procedures, see Spirtes, Glymour

and Scheinnes (2000), Scheines (1997), Hausmand and Woodward (1999), and also Pearl (2000).

In the statistical literature, the simplest notion of dynamic causality can be considered in time

series models where past is considered cause for the present. Assume that the stochastic process

{Yt}t∈Z has a spectral density satisfying
R
Πd log f (λ) dλ > −∞, RΠd f (λ)−1 dλ < ∞. There are

infinitely many factorizations of the spectral density,

f (λ) = (2π)−1 σ2 |A (λ)|−1

where A (λ) is normalized with a0 =
R
Πd

A (λ) dλ = 1. We usually identify a particular factor by

setting some coefficients to zero. In particular, A (λ) is known as causal representation when it has

Fourier expansion with real coefficients ak =
R
Πd

A (λ) eik
0λdλ = 0 for k > 0, and anticausal if ak = 0

for k < 0. Each of these factorizations leads to linear autoregressive models expressed with respect

to the past or the future of {Yt} respectively, as suggested by Wold (1954) and Wiener (1956). This
notion of past autoregressive modelling must be interpreted in terms of predictability rather than

causality. It is just an arbitrary interpretation of symmetric autocorrelations from one side, as a tool

to identify time series models. Actually, it is not clear that past is a cause for future, particularly

when we consider certain abstract phenomena in astrophysics and Quantum physics, where we can

find paradoxes easily. For example it is commonly accepted that the Big-Bang is the cause for the

universe dynamic expansion, but according to the current physical theories, time did not exist when

the Big-Bang occurred (the time-dimension was caused by it), so we cannot consider the Big-Bang

a “dynamic cause” of the universe expansion because it is a vicious circular definition.

The econometric literature has considered more complex notions of dynamic causality. Using ideas

of stochastic processes, assume that a sequence of measurements {Xt} of the “causal” phenomenon
are regularly taken along the time horizon, and measures {Yt} of the “effect” phenomenon are
similarly taken. Then, causality can be interpreted using recursive arguments: we say that there is

dynamic causality if for all time periods, (1) the measurements of the “effect” Yt are statistically

dependent on lagged measures of the causal variable Xt−1,Xt−2 conditionally on its own lags, and

(2) there is no reverse symmetric relationship (i.e., measurements of the “cause” Xt are statistically

independent from lags of the effect variable Yt−1, Yt−2, .. conditionally on its own lags). This idea

was put across by Granger (1969), who built on earlier work in statistics literature (Wold, 1954
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and Wiener 1956), and it is nowadays known as “Granger’s causality”, for a review see Engle et

al. (1983) and Geweke (1984). Granger’s causality is essentially a notion of crossed predictability

between two time series, and it is also close to vicious circularity: in order to assess whether Xt

causes Yt, we would already need to know whether Yt causesXt. Granger’s causality has considerable

operational significance in empirical analysis. Unfortunately, a definition of causality based on

dynamic regularities is likely to consider spurious regularities when both {Xt, Yt} are caused by Zt,
but Xt shows the influence of Zt before Yt.

The problem of providing a valid probabilistic causation theory is still open, and there is no

general definition avoiding symmetries and time conditional requirements yet. Many authors are

uncomfortable when thinking about the notion of causality in an uncertainty context. In part, as

Geweke (1984) points out, because “the idea is notoriously difficult to formalize, as casual reading in

the philosophy of science will attest”. Statisticians have essentially abandoned the quest for a valid

concept of probabilistic causation. In the next section, a probabilistic causality notion is presented

that avoids all the symmetries and conflicts inherent in previous definitions.

VALID PROBABILISTIC CAUSATION

Let Ω be the universal set, and F a σ-algebra of events that can be asserted as true or false with

some probability. Using set theory, for any sets A,B ⊂ Ω we can also express the fact A ⇒ B

through the expression A ⊂ B, meaning that if any ω ∈ A occurs then also ω ∈ B is satisfied.

Since we can also express the fact A ⇒ B through the expression A ⊂ B, then it is clear that

P (A) ≤ P (B) , but the reciprocal is not true and that is the reason for failure in PR definitions of

probabilistic causality. By contrast, I will introduce a concept A ⇒ B almost sure, using the idea

that A ⊂ B almost sure with respect to a probability function P , i.e. the probability of ω ∈ A

which are not in B have zero probability. Clearly, A ⊂ B if and only if A ∩B = A, and if and only

if A ∩ Bc = ∅ where Bc = {ω ∈ Ω : ω /∈ B} denotes the complement of set B. Therefore a valid
definition of almost sure causation is that:

Definition almost sure causality. Given a probability space (Ω,F , P ) , for any sets A,B ∈ F
we say that A causes B almost surely if A ∩Bc has null probability, i.e.

P (A ∩Bc) = 0.

I denote almost sure causality by A
a.s.[P ]⇒ B. If A,B ⊂ Ω are not measurables, the definition

can be extended using P∗ (A ∩Bc) = 0, where P ∗ denotes the outer probability.
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I am not requiring A to be a minimal cause for B, and it could have some irrelevant components.

I say that A is minimal cause if A ∩Bc = ∅, meaning that there is not any non empty subset in A

that does not belong to B (note that I simply require this set to have a zero probability measure).

This concept is compatible with the intuition underlying propositional implications.

The proposed definition is an asymmetric definition. If P (A ∩Bc) = 0 and P (Ac ∩B) = 0,

then A ∪ B = A ∩ B except for a set of probability null, meaning that both concepts A and B

are essentially the same P ({A ∪B} \ {A ∩B}) = 0 (i.e. both are equal to the intersection A ∩ B,
and all other components are negligible in probability terms). It means that both events are almost

surely equivalent, P (A = B) = 1.

Clearly, for any measurable set A, it is satisfied that A
a.s.[P ]⇒ Ω. We can consider the “reductio

absurdum” equivalence (A ⇒ B if and only if Bc ⇒ Ac). The same property is satisfied in almost

sure causality, where A
a.s.[P ]⇒ B if and only if Bc a.s.[P ]⇒ Ac since P (Bc ∩ (Ac)c) = 0. This is a form

of “conterfactual analysis”.

Note that A = ∅ implies any set B ∈ F , since P (A ∩Bc) = P (∅) = 0; although in general

we will consider non empty sets A with P (A) > 0. If B = Ω, then for any set A ∈ F , since
P (A ∩Bc) = P (∅) = 0, but in general we will consider sets B Ã Ω and with P (B) < 1. If A and

Bc are statistically independent, then P (A ∩Bc) = P (A)P (Bc) and causality means that A has

zero probability or B has probability one, so that the relationship is meaningless.

The next table shows all the causal events that can be established between A and B,

A Ac

B A ∩B Ac ∩B
Bc A ∩Bc Ac ∩Bc

Then, we have the following possible causal probabilistic relationships:

Strict causality

A
a.s.[P ]⇒ B, B

a.s.[P ]; A

equivalence

A
a.s.[P ]⇒ B, B

a.s.[P ]⇒ A

P A Ac

B π ∈ [0, 1) 1− π

Bc 0 1

P A Ac

B 1 0

Bc 0 1

Let I (A) = I (A) (ω) denote the indicator function for the set A ∈ F (i.e., I (A) = 1 if ω ∈ A and

I (A) = 0 otherwise). Then, we can express P (A ∩Bc) = E [I (A ∩Bc)], where any of the following
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expressions can be considered:

I (A ∩Bc) = I (A) · I (Bc) = I (A) · (1− I (B)) = I (A)− I (A ∩B) ,
I (A ∩Bc) = min {I (A) , I (Bc)} = min {I (A) , 1− I (B)} ,
I (A ∩Bc) = max {0, (I (A)− I (B))} := (I (A)− I (B))+ ,

all of which can be proved considering combinations of indicator values giving a value of 1. To

assess almost sure causality in empirical context, we can replace the expectations E [I (A ∩Bc)] by

averages of observed events ω.

A smaller σ-algebra A ⊂ F can cause almost surely the event B ∈ F , if E [Z · I (Bc)] = 0 for

any bounded A-measurable random variable Z (actually, it is enough to check it for all Z indicator

functions of events in A). Then we say A a.s.[P ]⇒ B.

Often, causal relationships are based on random variables. The introduction of random variables

is useful because then we can relate probabilistic causality and empirical inferences. Most of the

Physical laws, can be expressed in terms of systems of equations B = {f (X) = ε}, or inequality
systems such as B = {f (X) ≤ 0}.
Equations and Causality: Let us consider a measure space (Ξ,B) , andX a measurable measur-

able applicationX : Ω→ Ξ, then (Ω,F , P ) induces a probability law PX = P ◦X−1 on (Ξ,B). In par-
ticular, if we consider the Borel euclidean space

¡
Rd,Bd

¢
then a measurable application X : Ω→ Rd

is a random vector. Given two events α, β ∈ B and setting

A = {ω ∈ Ω : X (ω) ∈ α} , B = {ω ∈ Ω : X (ω) ∈ β}

then A
a.s.[P ]⇒ B (i.e. E [I (X ∈ α) · (1− I (X ∈ β))] = 0) is trivially equivalent to α

a.s.[PX ]⇒ β.

This approach is particularly relevant for empirical purposes. In particular, considering the Borel

euclidean space, we can consider theories expressed by systems of equations such as A = {g (X) = 0}
and B = {g (X) = 0} ; or alternatively by inequalities A = {g (X) ≤ 0} , and B = {f (X) ≤ 0} .
A variety of cases can be studied here, for example the experimental design framework. As-

sume that the event A denotes a specific treatment that can be set by the researcher. Then, we

can consider if B is satisfied when the treatment A is applied, and study the causal hypothesis

E [I (A ∩Bc)] = 0. In particular, we can consider an event defined by a conditional expectation such

as B = {E [Y |Z] = 0} , and the null causal hypothesis is

E [I (A)− I (A ∩ {E [Y |Z] = 0})] = 0.

12



Note that the classical experimental design framework considers if E [Y |Z,A] = E [Y |Z,Ac] a.s.,

which is a relevant but different problem.

In most empirical applications, we assume that the probability function of X is unknown but we

observe a sample of data identically distributed as the random vectorX. Alternatively, some random

variables could be observed but others could be regarded as latent variables or random shocks (about

which probability distribution we have some information). For instance, consider events given by

A = {ω ∈ Ω : g (X) ≥ ε} , B = {ω ∈ Ω : f (X) ≥ �} , (4)

where (ε, �) are unobserved random variables, and define H (ε, �|x) as the conditional cumulative
probability distribution of (ε, �) |X = x. Applying the law of iterated expectations, the causality

statement A
a.s.[P ]⇒ B can be expressed by the identity,

E [E [I (ε ≤ g (X)) |X]−E [I (ε ≤ g (X)) I (� ≤ f (X)) |X]] = 0⇔
E [H (g (X) |X)−H (g (X) , f (X) |X)] = 0.

were H (ε|x) = lim�→∞H (ε, �|x) is the marginal conditional distribution of ε|X = x. The distribu-

tion H can be specified by a parametric model or be unknown (e.g., in a semiparametric setup).

The notion of probabilistic causality can be extended to the dynamic framework. Let us consider

Ξ a topological space defined by the Cartesian product of a non empty family of complete separable

metric spaces {Ξt}t∈T each one with a Borel σ-algebra Bt. Let B denote the cylindrical σ-algebra
generated by the projections (containing the Cartesian product of all the Borel σ-algebras Bt), which
is equal to the Borel σ-algebra for the product topology due to the separability assumption. Let

X be measurable applications from (Ω,F) into (Ξ,B) , i.e. a stochastic processes. Then we can
consider

A = {ω ∈ Ω : X (ω) ∈ α} , B = {ω ∈ Ω : X (ω) ∈ β}

for α, β ∈ B. In particular, we can consider events α and β about the ocurrence of some projections
A = {Xt = a0,Xt−1 = a1, ...,Xt−L = aL} and B = {Xt+1 = b1} , or more complex events such as
A = {g (Xt,Xt−1, ...,Xt−L) = 0} and B = {f (Xt+1,Xt+2, ...,Xt+K) = 0} . A variety of dynamic

probabilistic causal relationships can be considered, including random shocks {εt} in the expressions
g and f.

Finally, notice that causality can be considered as a limit case in the probability space (Ω,F , P ) .
This is useful in contexts where causality is difficult to assess but can be studied by a series of related

situations.

13



Definition Asymptotic probabilistic causality. Given a probability space (Ω,F , P ) , consider
a sequence of events {An} ⊂ F , and {Bn} ∈ F . I say that {An} cause asymptotically {Bn} in
probability if limn→∞ P (An ∩Bc

n) = 0, and {An} cause asymptotically {Bn} almost surely if
P (lim supn→∞ {An ∩Bc

n}) = 0.

The use of limit ideas allows us to consider asymptotic forms of dynamic causality, such as A =

{g (Xt,Xt−1,Xt−2....) = 0} and B = {f (Xt+1,Xt+2, ...) = 0} , involving an infinite number of lags.
Although conceptually correct, the proposed notion of almost sure causality is too strong. Usually,

scientists can relay on the strength of a causal relationship that only fails in quite rare events. In this

sense, for the notion of causality it would be sufficient that the event A∩Bc has a small probability,

even if it is not equal to zero.

Definition �−probabilistic causality. Given a probability space (Ω,F , P ) , for any sets A,B ∈ F
and any � ∈ (0, 1), I say that A causes B in terms of �−probabilistic causality if Pr (A ∩Bc) ≤ �.

Asymptotic causality can be also defined on these terms requiring that limn→∞ P (An ∩Bc
n) ≤

� (in probability) or P (lim supn→∞ {An ∩Bc
n}) ≤ � (almost surely), respectively.

Since we can consider several values � ∈ [0, 1], I define the causality ε-tolerance as

ε = inf {� ∈ [0, 1] : P (A ∩Bc) ≤ �} = P (A ∩Bc) .

If it is equal to zero, there is almost sure causality.

Physical laws can be described at different coarser levels of detail, and there might be causal

relationships that are valid relatively to a specific level, but not in general. In Appendix A, I discuss

the concept of conditional probabilistic causation.

Sequential causality

The probabilistic causality notion has been defined as a stable fact: if we think that A implies B

almost surely, this notion is not subject to any change. However, what is believed true or false can

change with time (e.g., due to Bayesian learning, or other exogenous changes). We introduce sequen-

tial causation to study causality for cases where the basic beliefs evolve, often due to information

arrival.

In this section I will consider a form of sequential causality. Thus, I consider a sequence of

probability spaces {(Ω,Fn, Pn)} , where the {Fn} is a filtration (i.e., a non decreasing sequence of
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σ-algebras Fn ⊂ Fm if n < m), and define F as the smallest σ-algebra containing the union of all

the Fn. A particular case is the non-learning situation, where Fn = F for all n and all the Pn are

defined on the same F . We can define a type of probabilistic causation in the following sense.

Definition Sequential Causality in Probability. Given a sequence of probability spaces (Ω,Fn, Pn) .
If A,B ⊂ F I say A causes B sequentially if limn→∞ Pn (A ∩Bc) = 0. Furthermore, for any

sequence {An} with An ∈ Fn for all n, and any B ∈ F , I say that that {An} causes B
sequentially with respect to {Pn} if,

lim
n→∞Pn (An ∩Bc) = 0.

Similarly, if An, Bn ∈ Fn for each n, I can say that that {An} causes {Bn} sequentially with
respect to {Pn} if, limn→∞ Pn (An ∩Bc

n) = 0.

Sequential causality can be related with convergence of probability measures. Clearly, if Pn → P

in the sense that limn→∞ Pn (A) = P (A) for all set A ∈ F , then A causes B sequentially respect

to {Pn} where A,B ∈ F , implies that A a.s.[P ]⇒ B. If Ω is a topological space, and {Fn} is included
in the Borel σ-algebra, the idea can be extended to weak convergence. Assume that Pn →w. P (i.e.

limn→∞ Pn (A) = P (A) for all A in the Borel σ-algebra with P (∂A) = 0 where ∂A is the frontier

of A), if A causes B sequentially with respect to {Pn} and P (∂ (A ∩Bc)) = 0, then A
a.s.[P ]⇒ B. In

some cases we can also consider sequences of causal events: if Pn converges to P in the variational

norm (i.e. supA∈F |Pn (A)− P (A)| = 0) then limn→∞ Pn (An ∩Bc
n) = 0 implies that {An} cause

asymptotically {Bn} in probability P (i.e. limn→∞ P (An ∩Bc
n) = 0). In Appendix B, I discuss the

robustness of probabilistic and sequential causation.

The events An, Bn can be defined in terms of random variables. We define a sequence of random

variables {Xn}, i.e. a sequence of measurable applications from (Ω,Fn, Pn) on the Borel measurable
space

¡
Rd,Bd

¢
, and a measurable application X from (Ω,F , P ) on the ¡Rd,Bd¢ . For example,

let us consider the events An = {Xn ∈ α} and B = {X ∈ β} , where α, β ∈ Bd, then we can
consider the asymptotic causality by the requirement limn→∞EPn [I (Xn ∈ α) (1− I (X ∈ β))] = 0.

These expectations can be estimated empirically, and related to empirical stochastic processes for

triangular arrays. The rest of the paper is focused on the empirical study of probabilistic causation.
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EMPIRICAL ANALYSIS AND CAUSALITY

Karl Popper (1959) classifies theories as either metaphysical or physical, where the physical ones

make predictions about the real world and can be empirically tested, in contrast to the metaphysical

theories. For example, this paper discusses metaphysical concepts about causality. But not every

physical theory is scientific. Popper used the notion of falsifiability to “demarcate” what science

is: a physical theory is falsifiable (refutable or testable) if it can be shown false by real experience

(from direct observation or a controlled physical experiment). For example, theological dogmas are

unfalsifiable. According to Popper, if the physical theory fails it must be discarded or reshaped, but

passing empirical tests does not ensure that the falsifiable theory is true. In this section I formalize

these concepts, and study probabilistic causality from an empirical point of view.

Here I formalize some of these notions. Therefore, I will consider a universe of contingent ele-

mentary events Ω, in this set I define a σ-algebra F of subsets or events that we are interested in

studying. We say that the universe Ω is physical if there exists a set of X applications X : Ω→ R

of (observable) empirical signals about the universe, and name (Ω,X ) a physical space. Then, I say
that F is a testable σ-algebra (or falsifiable) if F ⊂ σ (X ), where σ (X ) is the smallest σ-algebra such
that the applications in X are measurable (i.e. σ (X ) = ©X−1 (U) : B ∈ B,X ∈ Xª with B the Borel
real σ-algebra). For us, scientific knowledge is demarcated by physical and testable measure spaces

(Ω,F) . Then, we can consider (probabilistic) scientific knowledge from two sources: deduction and

induction.

1. Probabilistic Deduction: Given a measurable space (Ω,F) (physical and testable in sci-
ences), let us consider some measurable assumptions {Bj}j∈J that we call “premises” with
known probabilities {P (Bj)}. Deduction means the computation of probabilities for other
events that can be expressed in terms of the premises by using countable intersections, unions

or conjugations and the probability axioms.

For a rich enough class of premises, P (A) can be deduced for any A ∈ F , whilst if not, we can
only deduce probabilities for events in σ

³
{Bj}j∈J

´
, and the events excluded from this σ-algebra

will be called “conjectures”. In deduction we take the probabilities {P (Bj)} as known, but in the
scientific method this knowledge comes from induction.

2. Probabilistic Induction: Given a physical and testable measurable space (Ω,F), we per-
form statistical inference to assign probabilities P (•) to some measurable events A ∈ F from
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empirical data. In some cases, the inductive inference estimates P (•) for a few simple events
from which the probability of A can be deduced, but often we can directly estimate P (A).

More often, we try to estimate the whole distribution P .

Deduction and induction can be combined. Given a testable physical space (Ω,X ) , the process
of selecting a set of premises {Bj}j∈J ⊂ Ω generating a σ-algebra F = σ

³
{Bj}j∈J

´
such that

F ⊂ σ (X ) is called “abduction.” Then, induction can be used to allocate probabilities to the
premises, and then to deduce the probability of more complex events in F. This is central to the
scientific method. Note also that the physical space (Ω,X ) can change with new information. We
can consider a monotonously increasing sequence {Xn} of sets of signals about Ω, and define a fil-
tration {Fn} with Fn ⊂ σ (Xn) of refined testable theories. We can explain the progress of scientific
knowledge as the permanent process of getting information Xn, and updating the probability infer-
ences of contingent assertions by conditioning on the σ-algebra Fn refined by the new information
Xn. Popper’s discussion about falsified/unfalsified theories can be reconsidered under the light of
the presented framework.

Regarding the estimation of P in the induction process, classical inference methods usually quan-

tify the probability measure P (•), considering a parametric model or family {Pθ : θ ∈ Θ} , and
setting a single value θ0 ∈ Θ in a separable metric space3 that minimizes some adjusting func-

tion or specific distance D (P,Pθ) between the model and the true probability. Then, the induction

process estimates θ0 by minimizing the adjustment D (P, Pθ) of Pθ to the empirical distribution P (or

smoothed version of it) of the collected data. These procedures are compatible with the frequentist

view about probability laws, providing sound ground for scientific analysis.

Members of the “Bayesian statistics” school, however, think that the probability or degree of

belief P (•) cannot be “quantified” precisely. Instead, they postulate a set of possible probability
laws usually parametrized by some model {Pθ : θ ∈ Θ}, quantifying the probability of each law with
an arbitrary prior belief distribution π (θ), and updating their prior assumption with new data,

computing π (θ|data) with the Bayes theorem4. Therefore, Bayesian statistics computes a “diffuse”
or imprecise quantification Pθ of the degree of belief for falsifiable events. The posterior distribution

is dependent upon the initial prior π assumption, although its influence is reduced when the dataset
3 In classical inference Θ is included in an euclidean space. But it could alternatively be included in an infinito-

dimensional space (as in the nonparametric and semiparametric literature, for example)
4 It is not clear why Bayesians think that it is possible to quantify the prior. One could similarly parametrize a

family of “priors” {πγ (θ) : γ ∈ Γ} and postulate a higher order prior probability µ (γ) for these parameters, and so

on, developing a hierarchically complex Bayesian structure.
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increases. The approach is somewhat useless and therefore, paradoxically, Bayesians are forced to

use Pθe as a quantification of the probability P (•) where θe = E [θ|data]. Then, classical and
Bayesian methods show striking analogies in a few models. The Bayesian approach is not accepted

by many scientists because it introduces more subjectivity in the induction process than the classical

approach, and will be avoided in this paper.

The analysis of probabilistic causal relationships can be tackled from basic premises using deduc-

tion, or it can be studied directly from empirical data using induction. This is the aim of the second

part of this paper. If we use empirical data, the analysis can lead to the rejection/acceptance of a

probabilistic causal relationship through hypothesis testing. The empirical tests are performed with

a significance level (quantifying the probability of rejecting a valid theory) and power (quantifying

the probability of rejecting a false theory). From the empirical point of view, the study of reciprocal

causality is a similar problem, and I will focus on one-directional analysis.

To study an almost sure causal relationship A
a.s.[P ]⇒ B, I consider the Bernoulli random variable

δ = I (ω ∈ A ∩Bc) with π = P (δ = 1) = P (A ∩Bc) . The simplest empirical tests of causation

must study the relative frequency from a sample of independent observations {δ1, ..., δn}. If I define
Dn =

Pn
i=1 δi then bπn = Dn/n is the relative frequency. A simple decision test is the classical

technique of counter-example: if bπn > 0 (i.e. Dn > 0) then we reject the a.s. causality. The

significance level of this test is 100% since Pr (Dn > 0) = 0 under the null π = 0, and the test is

consistent as the power is given by

Pr (Dn > 0) = 1− Pr (Dn = 0) = 1− (1− π)n → 1,

for any alternative π ∈ (0, 1] . Therefore, a causal relationship is rejected if it has at least one
counterexample, and the power of this reasoning increases with n.

In empirical analysis, even if the causal relationship A
a.s.[P ]⇒ B is true, experiments are often

affected by noisy elements corrupting the probability π, so that for a large enough sample we can

easily observe a relative frequency bπn small but positive. In other words, if we apply the counter-
example rule, in many cases we would end up rejecting causality. The counter-example rule is too

strict for studying causality in real world situations where the value P (A ∩Bc) can be small but not

too clear based on empirical data. Two strategies can be considered to introduce more flexibility:

The first approach is based on sequential causality concepts. Let us consider a sequence {(Ω,Fn, Pn)}∞n=1 ,
and {An} causes B sequentially for {Pn} , (in particular we can consider An = A for all n). We
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define πn = Pn (An ∩Bc) ∈ (0, 1) , and consider that asymptotically

πn = c+ λ/n+ o
¡
n−1

¢
for a small value λ > 0 and some c ≥ 0. The null assumption of sequential causality can be stated by
H0 : c = 0 so that nπn → λ, whilst the alternative assumption is H1 : c > 0 and nπn →∞. Define

a Bernoulli variable δn = I (ω ∈ An ∩Bc) with Pn (δn = 1) = πn, and consider a triangular array of

i.i.d observations {δn1, ..., δnn} distributed as δn for each n. Then I defineDn =
Pn

i=1 δni. By the De

Moivre-Laplace theorem, under the null Dn −→w.[Pn] Poiss (λ) where Poiss (λ) denotes a Poisson

random variable with parameter λ. Therefore, if we reject the null for Dn > 0, the probability of

rejection under the null is approximately

Pr (Dn > 0) = 1− Pr (Dn = 0)→ 1− e−λ.

close to zero if λ is very small (e−λ → 1 when λ ↓ 0). Actually, we can control the significance level in
the testing process, rejecting the null if Dn > zα, where zα is chosen so that Pr (Poiss (λ) > zα) = α

under the null assumption. The value λ > 0 determines our robustness requirements. Under the

alternative πn → c > 0 and Dn
p→∞ so that Pr (Dn > zα)→ 1, i.e. the test is consistent.

We can consider a second procedure for situations where the causal relationship is only approx-

imately satisfied, using the notion of �−probabilistic causality. For instance, if δ = I (ω ∈ A ∩Bc)

with π = P (δ = 1) = P (A ∩Bc) > 0, using an i.i.d. sample {δ1, ..., δn} and bπn = n−1
Pn

i=1 δi then

we can test if π < � for some specific � ∈ (0, 1) , e.g. using a normal asymptotic distribution if n
is large. Also, we can consider bπn = n−1

Pn
i=1 δi, as an estimate of the causality-tolerance ε. This

second approach will be considered in the causal modelling section.

MODELLING AND CAUSALITY

So far I have discussed the empirical analysis of causality between fully specified theories A and B.

But usually, scientific theories are not totally specific. They are defined by a general model, including

parameters or flexible components to play with in order to empirically strengthen the postulated

causal relationships. Researchers usually choose the parameters that are more likely to have a causal

relationship from a pre-specified class, relating causality to modelling problems. Following this idea

we can consider, for example, the events Aθ = {gθ (X) ≥ 0} and Bθ = {fθ (X) ≥ 0} (equalities could
be alternatively considered ) with θ ∈ Θ ⊂ RK and modelers can seek the parameter θ0 ∈ Θ for

which a causal relationship Aθ0 ⇒ Bθ0 is most likely; i.e. we minimize the ε-tolerance in θ ∈ Θ.
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Therefore, we are faced with the problem of solving

min
θ∈Θ

P (Aθ ∩Bc
θ) = min

θ∈Θ

Z
lθ (X) dP.

where lθ (X) = I (X ∈ Aθ) (1− I (X ∈ Bθ)) . These problems are central to a variety of physi-

cal sciences. Given a sample {X1, ...,Xn} from P, and appropriate identification assumptions, θ0

can be estimated by bθn minimizing the empirical analogous minθ∈Θ Pn (Aθ ∩Bc
θ) , where Pn (A) =

n−1
Pn

i=1 I (Xi ∈ A) denotes the empirical distribution function, i.e.

bθn = argmin
θ∈Θ

Z
lθ (X) dPn.

Notice that causal modelling can be considered in terms of minimization of
R
lθdP for a class of

functions lθ in a variety of cases.

1. First, in some contexts, it might be convenient to replace I (X ∈ Aθ ∩Bc
θ) by a smooth ap-

proximation to the indicator function. For example, if Aθ, Bθ are closed sets in a separable

metric space (Ξ, d) such as the euclidean space, then an indicator function I (A) (x) can be

approximated by the uniformly continuous function,

fh (x,A) = (1− d (x,A) /h)+ (5)

where h > 0, and it is satisfied that I (A) (x) ≤ fh (x) ≤ I
¡
Ah
¢
(x) ,whereAh = {x : d (x,A) < h} .

Therefore, we can consider the class of smooth functions

L = {fh (x,Aθ ∩Bc
θ) : θ ∈ Θ}

or alternatively consider an approximation to each set Aθ and Bθ,

L = {lθ (x) = fh (x,Aθ) (1− fh (x,Bθ)) : θ ∈ Θ} .

2. We can also consider a convolution smoothing, considering the sets Aθ ∩ Bc
θ as elements of

an L1 space and approximate them by means of convolution, e.g. considering the class of

functions

L =
½
lθ,h (x) =

Z
I (z ∈ Aθ ∩Bc

θ)φh (z − x) dz : θ ∈ Θ
¾

(6)

where the kernel φh denotes the N
¡
0, h2I

¢
density (other kernels can be considered, alterna-

tively), so thatZ
lθ,h dPn = n−1

nX
i=1

Z
Aθ∩Bc

θ

φh (z −Xi) dz =

Z
Aθ∩Bc

θ

Ã
n−1

nX
i=1

φh (z −Xi)

!
dz,
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meaning that we integrate Aθ ∩ Bc
θ with respect to a smooth density estimator. To improve

the approximation behaviour we can alternatively consider a class of functions

L =©lθ,h1,h2 (x) = fh1 ∗ φh2 : θ ∈ Θ
ª

where lθ,h1,h2 is defined as the convolution of fh1 (x,Aθ ∩Bc
θ) with a Gaussian kernel φh2 .

3. For example, if we consider Aθ = {gθ (X) ≥ ε} and Bθ = {fθ (X) ≥ �} where (ε, �) are un-
observed random variables independent from X with distribution function H (ε, �) , then the

optimal θ solves

min
θ∈Θ

E [lθ (X)]

where lθ (X) = H (gθ (Xi) ,∞)−H (gθ (Xi) , fθ (Xi)) , and can be estimated using the estimatorbθn = argminθ∈Θ R lθ dPn.
All the previous examples show that causal modelling consists of minimizing the expectation E [l]

for a class of parametrized functions L. Let (Ω,F) be a testable physical measurable space, X an

observable random vector with unknown probability P, and {X1, ...,Xn} a random sample from P.

Assume that the class {(Aθ ∩Bc
θ)} can be identified with a class LΘ = {lθ : θ ∈ Θ} in such way that

minθ∈Θ P (Aθ ∩Bc
θ) = minθ∈Θ

R
lθ dP . To simplify the notation, I will use the notation P l =

R
l dP,

and Pn l =
R
l dPn. We assume that for a class of measurable functions L the causal modelling

problem is solved by some l∗ ∈ L,
l∗ ∈ argmin

l∈L
P l

and l∗ is estimated with the empirical analogous

bln ∈ argmin
l∈L

Pn l

We define the “sub-causality” associated to l ∈ L as

CP (l) = P l −min
l∈L

P l = P l − P l∗.

Then I say that bln is a consistent estimator of l∗ in terms of probabilistic causality if CP

³bln´ tends
to zero almost surely when the sample size n→∞.
We focus on the �−probabilistic causality, which is the relevant case for empirical applications.

Assume henceforth that Pl∗ > 0. Notice that if the model allows to establish almost-sure causality

Pl∗ = 0, then Pr {Pl∗ = 0} = 1, so that Pbln ≤ Pl∗ = 0 with probability one and PrnCP

³bln´ = 0o =
1 trivially. In the general case, though, CP

³bln´ > 0 for finite samples.
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Consistency

Here I study the almost sure convergence of CP

³bln´ to zero when n→∞, meaning that P bln is
a good estimate for Pl∗. Central to the analysis is the study of the supremum norm of the empirical

process {(Pn − P ) l}l∈L.
Using that Pn bln ≤ Pn l∗, it can be deduced that

CP

³bln´ = P bln − Pn bln + Pnbln − Pl∗ ≤ P bln − Pn bln + (Pn − P ) l∗

= (Pn − P )
³
l∗ − bln´ .

Using that

CP

³bln´ ≤ sup
l,l0∈L

|(Pn − P ) (l − l0)| ≤ 2 sup
l∈L

|(Pn − P ) l| ,

an upper bound for CP

³bln´ is obtained, which is determined by the supremum norm of the empirical
process {(Pn − P ) l}l∈L . Furthermore, since Pn bln − P bln ≤ supl∈L |(Pn − P ) l|, bounding the
supremum of the empirical process we get an estimate of the error made when Pn bln is used to
estimate P bln. If I define the “empirical sub-causality”,

CPn (l) = Pn l −min
l∈L

Pn l = Pn
³
l − bln´ ,

then using that Pl∗ ≤ Pbln, I conclude that
CPn (l)−CP (l) = Pn

³
l − bln´− P (l − l∗) = (Pn − P ) l +

³
Pl∗ − Pnbln´

≤ (Pn − P ) l − (Pn − P )bln = (Pn − P )
³
l − bln´ ,

and therefore |CPn (l)−CP (l)| is also uniformly bounded by 2 supl∈L |(Pn − P ) l| .
The rest of the section is devoted the analysis of conditions ensuring that the supremum norm

of the empirical process {(Pn − P ) l}l∈L tends to zero, and its relation with the causal analysis.
Let (L, ρ) be a semimetric space of functions l : Rd → R, and N (ε,L, ρ) the covering number or
minimum number of balls or radius ε needed to cover L, and logN (ε,L, ρ) is known as the metric
entropy. An envelope for the class L is any function L (x) ≥ 0 such that |l (x)| ≤ L (x) for all x ∈ Rd
and all l ∈ L. Since Pn puts all its mass on the set of observations {X1, ...,Xn} , it is sufficient to
our purposes to measure distances at this set. In this paper I consider the semi-metric space (L, ρn),
for the stochastic distance

ρn (l, l
0) = kl − l0kL1(Pn) = n−1

nX
i=1

|l (Xi)− l0 (Xi)| .
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We could consider the Lp (Pn) semi-noms. The covering numbers are useful tools for the analysis of

empirical processes. Pollard (1984) proved that if L has a measurable envelope L < M, then

P

½
sup
l∈L

|(Pn − P ) l| > δ

¾
≤ 8E [N (δ/8,L, ρn)] e−nδ

2/128M2

,

which generalizes a popular bound by Vapnik and Chervonenkis (1971) and implies the ULLN when

E [logN (δ,L, ρn)] = o (n) for all ε > 0 (actually, the condition is also necessary for the ULLN).

In the case of non measurable events, we should replace E [·] and P {·} by outer expectations and
probabilities, respectively. We will discuss later how the metric entropy condition can be checked

by combinatorial arguments.

In some cases we consider a class of probability functions P, for example we can consider a
neighborhood of the true probability (an approach introduced by Le Cam). The ULLN can be

proved also uniformly in the class P. If,

lim
M→∞

sup
P∈P

P (F · I (F > M)) = 0, (7)

sup
Q∈Qn

logN
³
ε kLkL1(Q) ,L, L1 (Q)

´
= op (n) ,

for all ε > 0, then the ULLN is satisfied uniform in P ∈ P, see van der Vaart and Wellner (1996, Th
2.8.1). This result is particularly useful in the context of sequential causality. For an appropriate

sequence P = {Pn} of probability functions, CPn

³bln´ →a.s. 0, as a consequence of the inequality

supP∈P CP

³bln´ ≤ 2 supP∈P supl∈L |(Pn − P ) l| .

Error bounds and convergence rates

We can obtain more insightful bounds for supl∈L |(Pn − P ) l|, using that this variable is concen-
trated around its mean, since for all δ > 0,

Pr

½
sup
l∈L

|(Pn − P ) l|−E

∙
sup
l∈L

|(Pn − P ) l|
¸
≥ δ

¾
≤ 2e−2nδ

2 ⇔

Pr

(
sup
l∈L

|(Pn − P ) l| ≤ E

∙
sup
l∈L

|(Pn − P ) l|
¸
+

r
2 ln (1/δ)

n

)
≥ 1− δ,

by McDiarmid’s (1989) bounded difference inequality. The next result, based on Pollard’s work,

provides a bound E [supl∈L |(Pn − P ) l|] . Under appropriate conditions, this bound is O ¡n−1/2¢,
which can be combined with McDiarmid’s (1989) bounded difference inequality to obtain convergence

rates for CP

³bln´.
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Theorem: Assume that L has a measurable envelope L such that PL <∞. Then,

E

∙
sup
l∈L

|(Pn − P ) l|
¸
≤ 24√

n
sup
Q∈Qn

Z 1

0

r
log 2N

³
ε kLkL1(Q) ,L, L1 (Q)

´
dε

whereQn is the class of distribution functions with finite mass at n arbitrary points {x1, ..., xn}.
If for a class of probability functions P, the measurable envelope satisfies (7), then

sup
P∈P

EP

∙
sup
l∈L

|(Pn − P ) l|
¸
≤ 24√

n
sup
Q∈Qn

Z 1

0

r
log 2N

³
ε kLkL1(Q) ,L, L1 (Q)

´
dε.

NOTE: Usually supx1...,xn N (ε,L, ρn) → ∞ when ε ↓ 0, and since R 1
0
ε−rdε < ∞ for all r < 1,

for the convergence of the integral
R 1
0

p
log 2N (ε,L, ρn)dε it suffices that supQn

N (ε,L, ρn) =
o
¡
ε−2

¢
.

PROOF

Without loss of generality assume that the covering number and the integral are finite. Applying

a standard symmetrization argument,

E

∙
sup
l∈L

|(Pn − P ) l|
¸
≤ 2EXEε

"
sup
l∈L

¯̄̄̄
¯n−1

nX
i=1

εil (Xi)

¯̄̄̄
¯
#

≤ 2EXEε

"
sup
l∈LM

¯̄̄̄
¯n−1

nX
i=1

εil (Xi)

¯̄̄̄
¯
#
+ 2P (F · I (F > M))

where LM = {l · I (F ≤M) : l ∈ L} , for all M > 0 by the triangle inequality, see e.g. van der

Vaart and Wellner (1996). We will consider the Rademacher process Eε

£
supb

¯̄
n−1

Pn
i=1 εibi

¯̄¤
for

an appropriate class of n-dimensional vectors b. This expectation can be bounded using different

techniques of covering numbers (for example, uniform covering numbers, random covering numbers,

bracketing numbers, etc.), and applying the associated Dudley’s entropy integrals.

We define

LM (Pn) = {b ∈ Rn : ∃l ∈ LM , bi = l (Xi) , i = 1, ..., n}

and consider d (b, b0) = n−1
Pn

i=1 |bi − b0i| , so that the isometry between (LM (Pn) , d) and (LM , ρn)

is maintained. Then, we consider

E

"
sup
l∈LM

¯̄̄̄
¯n−1

nX
i=1

εil (Xi)

¯̄̄̄
¯
#
= E

"
max

b∈LM (Pn)

¯̄̄̄
¯n−1

nX
i=1

εibi

¯̄̄̄
¯
#
= E

"¯̄̄̄
¯n−1

nX
i=1

εib
∗
i

¯̄̄̄
¯
#
,

and I study the expression on the right using the Kolmogorov chaining trick.

Let us define a sequence {Lk} such that Lk is a minimal cover of LM (Pn) of radius 2−k, increasing
to the value k = M such that LM is a minimal covering of radius 1 for the set LM (Pn) . For each
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1 ≤ k ≤ M I define bk as the nearest neighbor of b∗ in the k − th cover, so that d
¡
bk, b∗

¢
=

min
©
d
¡
bk, b∗

¢
: b ∈ Lk

ª
, and clearly d

¡
bk, b∗

¢ ≤ 2−k, which means that
d
¡
bk, bk−1

¢ ≤ d
¡
bk, b∗

¢
+ d

¡
b∗, bk−1

¢ ≤ 3 · 2−k.
Thus, setting b0 = 0 I can consider a telescopic sum

Pn
i=1 εib

∗
i =

PM
k=1

Pn
i=1 εi

¡
bki − bk−1i

¢
, and

E

"¯̄̄̄
¯
nX
i=1

εib
∗
i

¯̄̄̄
¯
#
≤

MX
k=1

E

"¯̄̄̄
¯
nX
i=1

εi
¡
bki − bk−1i

¢¯̄̄̄¯
#

≤
MX
k=1

E

"
max

b∈Lk,b0∈Lk−1,d(b,b0)≤3·2−k

¯̄̄̄
¯
nX
i=1

εi (bi − b0i)

¯̄̄̄
¯
#
.

Applying the Hoeffding inequality, for each pair b ∈ Lk and b0 ∈ Lk−1 such that d (b, b0) ≤ 3 · 2−k,

E

"
exp

(
x

nX
i=1

εi (bi − b0i)

)#
≤ 2e 12x2n(3·2−k)2

and the number of such pairs is bounded by |Lk| |Lk−1| = N
¡
2−k,LM (Pn) , d

¢2
(see e.g. Lugosi,

2002). Then, the Jensen inequality implies that for 1 ≤ k ≤M

E

"
max

b∈Lk,b0∈Lk−1,d(b,b0)≤3·2−k

¯̄̄̄
¯
nX
i=1

εi (bi − b0i)

¯̄̄̄
¯
#

≤ lnE

"
exp

(
max

b∈Lk,b0∈Lk−1,d(b,b0)≤3·2−k

¯̄̄̄
¯
nX
i=1

εi (bi − b0i)

¯̄̄̄
¯
)#

≤ ln

⎛⎝ X
b∈Lk,b0∈Lk−1d(b,b0)≤3·2−k

E

"
exp

¯̄̄̄
¯
nX
i=1

εi (bi − b0i)

¯̄̄̄
¯
#⎞⎠

≤ ln
n
N
¡
2−k,LM (Pn) , d

¢2 · 2 exp©√n3 · 2−kªo
leading to

E

"¯̄̄̄
¯
nX
i=1

εib
∗
i

¯̄̄̄
¯
#
≤

MX
k=1

3
√
n2−k

q
log 2N (2−k,LM (Pn) , d)2

which implies that

E

"
sup
l∈LM

¯̄̄̄
¯n−1

nX
i=1

εil (Xi)

¯̄̄̄
¯
#
≤ 3√

n

MX
k=1

2−k
q
log 2N (2−k,LM (Pn) , d)2

≤ 12√
n

MX
k=1

2−k
q
log 2N (2−k,LM (Pn) , d)

≤ 12√
n

Z 1

0

p
log 2N (ε,LM (Pn) , d),
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using that N (ε,LM (Pn) , d) is a monotonously decreasing function of ε. Finally, since PL < ∞,

then PnL = OP (1) and I can replace N (ε,LM (Pn) , d) by N
³
ε kLkL1(Pn) ,L (Pn) , d

´
where

L (Pn) = {b ∈ Rn : ∃l ∈ L, bi = l (Xi) , i = 1, ..., n} .

By the isometry, I can consider equivalentlyN
³
ε kLkL1(Pn) ,L, ρn

´
.The expectation of supl∈L |(Pn − P ) l|

is bounded by two times the upper bound for the Rademacher process, so that

E

∙
sup
l∈L

|(Pn − P ) l|
¸
≤ 24√

n
sup

x1...,xn

Z 1

0

r
log 2N

³
ε kLkL1(Pn) ,L, ρn

´
dε.

This proves the first part of the theorem.

For the second part, consider that

sup
l∈L

|(Pn − P ) l| ≤ sup
l∈LM

|(Pn − P ) l|+ (Pn + P )F · I (F > M)

and therefore,

sup
P∈P

E

∙
sup
l∈L

|(Pn − P ) l|
¸
≤ 2 sup

P∈P
EPEε

"
sup
l∈LM

¯̄̄̄
¯n−1

nX
i=1

εil (Xi)

¯̄̄̄
¯
#
+ 2 sup

P∈P
P (F · I (F > M))

then apply the same type of argument.

END-PROOF

The only issue is to compute the covering number N (ε,L, ρn). We use the combinatorial method
introduced by Vapnik and Chervonenkis (1974) and Vapnik (1998). For a given class A of subsets

of Rd, for an arbitrary set xn1 = {x1, ..., xn} of n points in Rd, we define

∆A (x1, ..., xn) = card {{x1, ..., xn} ∩A : A ∈ A} .

Then, the Vapnik-Chervonenkis (VC) n-shatter coefficient of A as the maximal number of different
subsets of a set of n points {x1, ..., xn} which can be obtained by intersecting it with the elements
of A,

SA (n) = sup
©
∆A (x1, ..., xn) : x1, ..., xn ∈ Rd

ª
.

The VC n-shatter coefficient can be equivalently defined as SA (n) = supx1,...,xn |A (xn1 )| , where
A (xn1 ) = {b ∈ {0, 1}n : ∃A ∈ A : bi = I (xi ∈ A)} . The Vapnik-Chervonenkis (VC) dimension (or
index) of the set A is defined as

VA = inf {n ≥ 1 : SA (n) < 2n} ,
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and V = ∞ if SA (n) = 2n for all n. Note that if SA (n) < 2n then SA (m) < 2m for all m > n

and the VC dimension is well defined. We say that A is a VC class if VA < ∞. The specific

value VA depends on the complexity of the considered model A, and it has been computed for
commonly used parametrized sets, see e.g. Devroye et al. (1996, Chapter 13). For example, if

A = {x : g (x) ≥ 0, g ∈ G} and G is an m−dimensional vector space of real valued functions defined
on Rd, then VA ≤ m. If A is the class of all linear half-spaces in Rd, the VC dimension is d+ 2. If

A is the class of all closed balls in Rd, the VC dimension is d+ 1. If A is the class of rectangles in

Rd, the VC dimension is 2d.

By definition, a VC class of sets picks out strictly less than 2n subsets from any set of n ≥ VA

elements, however in practice the value is much slower than the 2n−1 possible ones. Sauer’s lemma
states that if VA <∞, then SA (n) ≤

PVA
i=1

¡
n
i

¢
for all n, implying a that SA (n) ≤ (n+ 1)VA for all

n, and also that SA (n) ≤ (ne/VA)VA for n ≥ VA. Therefore SA (n) = O
¡
nVA−1

¢
. Covering numbers

and VC dimension are be related. Applying the Sauer lemma, Dudley (1978) proved that if A has

VC dimension VA <∞, then

N (ε,A, ρn) ≤
¡
4e/ε2

¢VA/(1−1/e) .
Haussler (1995) refined the bound to N (ε,A, ρn) ≤ e (VA + 1)

¡
2e/ε2

¢VA .

To apply these results in the context of the class of real valued functions L, we define the subgraph
of a function l ∈ L as the set {(t, x) : t < l (x)} . Then the VC dimension of the function class L is
defined as the VC dimension of all the subgraphs of functions l in L, denoted by VL. In particular,
when L = {I (Aθ ∩Bc

θ) : θ ∈ Θ} , i.e. it is defined by indicator functions, then the subgraph VC
dimension of L is equal to the VC dimension of the class of sets family A = {(Aθ ∩Bc

θ) : θ ∈ Θ} .
When smooth parametric classes L are considered we should compute the VC dimension directly,
but VL has been already computed in the nonparametric literature for the most commonly used

families of smooth functions. For for all 0 < ε < 1, and p ≥ 1, and a universal constant K > 0,

sup
Q
N
³
ε kLkLp(Q) ,L, k·kLr(Q)

´
≤ KVL (16e)

VL
µ
1

ε2

¶p(VA−1)
.

the supremum over all probabilities Q such that kLkLp(Q) > 0 (the proof can be found in van der

Vaart and Wellner, 1996, Th. 2.6.7). If PL <∞, applying the Theorem 1 leads to

E

∙
sup
l∈L

|(Pn − P ) l|
¸
≤ C

r
VL
n
, (8)
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for a universal constant C > 0. Under this premise, with probability 1− δ,

P bln ≤ Pn bln +C

r
VL
n
+ 2

r
2 ln (1/δ)

n
.

by McDiarmid’s (1989) inequality. Therefore

CP

³bln´ ≤ 2CrVL
n
+ 4

r
2 ln (1/δ)

n

with probability 1− δ.

Interestingly, we can use directly the combinatorial arguments on the rademacher process to obtain

that

E

∙
sup
l∈L

|(Pn − P ) l|
¸
≤ 2EXEε

"
sup
l∈L

¯̄̄̄
¯n−1

nX
i=1

εil (Xi)

¯̄̄̄
¯
#
≤ 2

r
log 2SL (n)

n
,

see Devroye and Lugosi (2001, Th. 3.1.), and by McDiarmid’s (1989) inequality,

P bln ≤ Pn bln + 4r log 2SL (n)
n

+ 2

r
2 ln (1/δ)

n

with probability 1 − δ, implying that CP

³bln´ = OP

³p
VL lnn/n

´
for VC classes by the Sauer

lemma. For a small size n, this bound could be better than the main one with rate OP

³p
VL/n

´
.

We can derive a sharper upper bound on CP

³bln´ using Talagrand’s (1996 a, b) concentration
inequality instead of McDiarmid’s (1989) one. Talagrand’s (1996 a, b) concentration inequality

guaranties that, with probability 1− δ,

sup
l∈L

|(Pn − P ) l| ≤ E

∙
sup
l∈L

|(Pn − P ) l|
¸
+

s
2 supl∈L V ar (l) log

¡
1
δ

¢
n

+ 4
log
¡
1
δ

¢
3n

.

where V ar (l) = Pl2−(Pl)2 . The advantage of Talagrand’s inequality is that it can be used to control
oscillations of the empirical process locally. Assume that V ar (l) ≤ c (Pl)α , for some c, α > 0 and

all l ∈ L, so that
V ar (l) ≤ c (CP (l) + Pl∗)α .

For example, V ar (l) = Pl = CP (l) + Pl∗ when l is defined by indicator function of Borel sets.

Then, if we define the set Lr = {l ∈ L : CP (l) ≤ r} , and φn (L, r) = E
£
supl∈Lr |(Pn − P ) l|¤ , we

have that with probability at least 1− δ,

sup
l∈Lr

|(Pn − P ) l| ≤ φn (L, r) +
s
2c (r + P l∗)α log

¡
1
δ

¢
n

+ 4
log
¡
1
δ

¢
3n

.

28



We denote two times the right hand side of the inequality by ϕn (r) ; it is an increasing nonnegative

function. Therefore, for all l ∈ Lr,

CP (l) ≤ 2 sup
l∈Lr

|(Pn − P ) l| ≤ ϕn (r)

Applying this argument to the subclass Lr containing all functions with ε-tolerances less than that

of bln, we obtain that with probability at least 1− δ

CP

³bln´ ≤ ϕn (r) .

Taking a smaller r we can improve the bound. The sharpest bound is obtained by considering a

fixed point r∗ = ϕn (r
∗) , leading to CP

³bln´ ≤ r∗n with probability at least 1 − δ, which can be

formally proved applying the arguments in Massart and Nédélec (2006) and Koltchinskii (2006).

Parametric and semiparametric estimation

As I have previously discussed, causal models can be defined by classes of measurable sets A =

{(Aθ ∩Bc
θ) : θ ∈ Θ} , and/or classes of functions L = {lθ : θ ∈ Θ} with P (Aθ ∩Bc

θ) = E [lθ] , (the

simplest case is lθ = I (Aθ ∩Bc
θ)). Let us define the optimal parameter θ

∗ = {θ ∈ Θ : lθ = l∗} , and
the estimator bθn = nθ ∈ Θ : lbθn = blno . Next I discuss the consistency of the parametric estimators
and the convergence rate.

We will assume that the parameter set Θ belongs to a separable semi-metric space with a pseudo-

distance d (which may be perfectly dependent on the unknown distribution P ). In a variety of cases,

the pseudo-distance and the causality tolerance are related in such way that CP (lθ) ≥ c · d (θ, θ∗)
for all θ ∈ Θ. For example, if we consider d2 ¡θ, θ0¢ = P

h
|lθ − lθ0 |2

i
, and the measurable envelope

of L is bounded by k > 0, then

d2 (θ, θ∗) = P
h
|lθ − lθ∗ |2

i
≤ 2k · P [|lθ − lθ∗ |] = 2k · P (lθ − lθ∗) = 2k · CP (l) ,

and the inequality holds with c = 1/2k. If d2
¡
θ, θ0

¢
= V ar [(lθ (X)− lθ0 (X))] also d2 (θ, θ∗) ≤

P
h
|lθ − lθ∗ |2

i
≤ 2k ·CP (l) .

The condition CP (lθ) ≥ c · d2 (θ, θ∗) implies that θ∗ is locally identified as a minimum of CP (lθ)

(i.e., ∀ε > 0, ∃η > 0 such that infd(θ,θ∗)>εCP (lθ) > η, considering η = cε2). These bounds,

combined with bounds for the expected value of the empirical process modulus of continuity, can be

used to obtain consistency and convergence rates:
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Theorem: Assume that for all θ ∈ Θ, there exists a constant C > 0,

CP (lθ) ≥ c · d2 (θ, θ∗) .

A) Assume that for every n and for all δ > 0, the centered process (Pn − P ) l satisfies that

E

"
sup

d(θ,θ∗)>δ
|(Pn − P ) (lθ∗ − lθ)|

#
≤ ζn (δ)√

n
, (9)

for functions ζn (δ) such that δ 7−→ ζn (δ) /δ
α is decreasing for some α < 2 not depending on

n. If r2n · ζn (1/rn) = O (
√
n) for all n, then bθn →p θ∗ and d

³bθn, θ∗´ = OP

¡
r−1n

¢
.

B) Alternatively, assume that

E

"
sup

d(θ,θ∗)<δ
|(Pn − P ) (lθ∗ − lθ)|

#
≤ γn (δ)√

n

for functions γn (δ) such that δ 7−→ γn (δ) /δ
α is decreasing for some α < 2 not depending on

n. If r2n · γn (1/rn) = O (
√
n) for all n, then bθn →p θ∗ and d

³bθn, θ∗´ = OP

¡
r−1n

¢
.

PROOF

A) Note first that for all ε > 0, if

d
³bθn, θ∗´ ≥ ε/rn =⇒ bθn /∈ B (θ∗, ε/rn)⇔

inf
d(θ,θ∗)≥ε/rn

Pn lθ ≤ inf
θ∈Θ

Pn lθ = Pn lbθn ≤ Pn lθ∗ ,

and therefore,

P ∗
n
rn · d

³bθn, θ∗´ ≥ ε
o
≤ Pr

½
inf

d(θ,θ∗)>ε/rn
Pn (lθ − lθ∗) ≤ 0

¾
= Pr

½
inf

d(θ,θ∗)>ε/rn
{CP (lθ)− (Pn − P ) (lθ∗ − lθ)} ≤ 0

¾
≤ Pr

(
inf

d(θ,θ∗)>ε/rn
CP (lθ)− sup

d(θ,θ∗)>ε/rn
(Pn − P ) (lθ − lθ∗) ≤ 0

)
using that

Pn (lθ − lθ∗) = P (lθ − lθ∗) + (Pn − P ) (lθ − lθ∗) = CP (lθ)− (Pn − P ) (lθ∗ − lθ)

Therefore, if

P ∗
n
rn · d

³bθn, θ∗´ ≥ ε
o
≤ Pr

(
sup

d(θ,θ∗)>ε/rn
(Pn − P ) (lθ∗ − lθ) ≥ inf

d(θ,θ∗)>ε/rn
CP (lθ)

)

≤ P ∗
(

sup
d(θ,θ∗)>ε/rn

|(Pn − P ) (lθ∗ − lθ)| > c (ε/rn)
2

)
≤ ζn (ε/rn) r

2
n

cε2
√
n

= O
¡
εα−2

¢
,
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Since ζn (cδ) ≤ cαζn (δ) for all c > 1 by the assumption on ζn, the result follows. For a consistency

result, it suffices that supθ∈Θ |(Pn − P ) (lθ∗ − lθ)|→p 0 which holds if L is a Glivenko-Cantelly class
(i.e., ULLN holds).

B) For the second part, consider that

P ∗
n
rn · d

³bθn, θ∗´ ≥ ε
o
≤ Pr

½
inf

rnd(θ,θ∗)>ε
Pn (lθ − lθ∗) ≤ 0

¾
≤

∞X
s=S

Pr

½
inf

2s−1<rnd(θ,θ∗)<2s
Pn (lθ − lθ∗) ≤ 0

¾
,

with S = min {s ≥ 1 : 2s > ε} . The last expression is equal to
∞X
s=S

Pr

½
inf

2s−1<rnd(θ,θ∗)<2s
(CP (lθ)− (Pn − P ) (lθ∗ − lθ)) ≤ 0

¾

=
∞X
s=S

Pr

(
inf

2s−1<rnd(θ,θ∗)<2s
(Pn − P ) (lθ∗ − lθ) ≥ sup

2s−1<rnd(θ,θ∗)<2s
CP (lθ)

)

≤
∞X
s=S

Pr

(
inf

2s−1
rn

<d(θ,θ∗)< 2s

rn

(Pn − P ) (lθ∗ − lθ) > c
22s

r2n

)

≤
∞X
s=S

γn (2
s/rn) r2n√
nc22s

= O

Ã ∞X
s=S

2(α−2)s
!

The expression tends to zero for ε→∞ (as S →∞).
END-PROOF

Remark: By the fixed point refinement obtained from the Talagrand’s inequality, teh assumption

d (θ, θ∗) ≤ c ·CP (lθ) for all θ ∈ Θ implies that

d2
³bθn, θ∗´ ≤ c · ϕn (r∗n) = c · r∗n

with probability 1− δ, and d
³bθn, θ∗´ = OP (

√
r∗n) .

It is usually easier to obtain faster convergence rates when L contains smooth functions with

moderate complexity. For example, if we study the events (4) and consider the function lθ (X) =

H (gθ (X) |X) − H (gθ (X) , fθ (X) |X) , with θ ∈ Θ ⊂ RK and a known smooth cumulative dis-

tribution H (ε, �|X), the parameter solving minθ∈Θ P lθ can be studied using the standard theory

of M-estimators, and consistency at
√
n rate can be easily derived. However, the specification of

H is a risky assumption for an unobservable variable, by contrast to more flexible semiparametric

approaches. When non-smooth functions L are considered, e.g. if L = {I (Aθ) (1− I (Bθ)) : θ ∈ Θ},
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the consistency of bθ is harder to obtain, and even if we can prove consistency the convergence rate
can be too slow. In this context, we can consider smooth functions to improve it, e.g. considering

the approximation (5).

Unfortunately, models L with a finite VC dimension are often too small, and we can easily find
classes with infinite VC dimension (e.g., when Θ belongs to an infinito-dimensional separable metric

space). In these cases, we can consider an approximation method penalizing complexity. A simple

alternative is the sieves method, where I consider an increasing sequence a sequence {Lk} ⊂ L
monotonously increasing to L, and all of the Lk with finite VC dimension. For example, in the

parametric model LΘ I can consider {Lk} as the constraint of L to Θk for a sequence of finito-
dimensional subspaces Θk increasing to Θ. Thus, the sieves method solves

Pn l→ min, l ∈ Lk.

The solution blnk is compared with that of {P l : l ∈ Lk} . Let us define

Ck (l) = P l − min
l∈Lk

P l,

for all l ∈ Lk. Notice that the global causality default satisfies,

C
³blnk´ = µ inf

l∈Lk
P l − P l∗

¶
+Ck

³blnk´ ,
both terms are playing the role of bias and variance, respectively. Note that infl∈Lk (P l − P l∗)→ 0

when k → ∞, and if Lk satisfies that E [logN (δ,Lk, ρn)] = o (n) for all δ > 0, then Ck

³blnk´ → 0

almost surely when k → ∞. To ensure that both components tend to zero, typically we require

that k = kn increases with the sample size at a particular rate, and kn is known as the smoothing

number. In particular if Lk is a VC class Ck

³blnk´ = OP

³p
VLk/n

´
, so that setting kn such thatp

VLkn/n+ kn →∞ when n→∞ I conclude that C
³blnk´→a.s. 0. For example, in the context of

smoothed models like (5), we can consider that L is indexed by a smoothing parameter h, letting
h ↓ 0 with n → ∞ in such way that nhn → ∞ we can usually obtain consistency, and we can

also obtain fast convergence rates for the estimator bθn in classes of events {(Aθ ∩Bc
θ) : θ ∈ Θ} with

moderate complexity. This is essentially a semiparametric procedure.

Alternatively, if we consider an upper bound πk (l) ≥ infl∈Lk P l − P l∗, then an alternative to

the sieves approach is the regularization method, defining blnk as the minimizer of the penalized
functional,

Pn l+ πk (l)→ min, l ∈ L.
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These ideas can be connected to the literature on classification theory, see e.g. Boucheron, Bousquet

and Lugosi (2005), Devroye et al. (1996, Chapter 18).

CONCLUDING REMARKS

The notion or probabilistic causation is commonly used by scientists and laymen who arguably

based their use on data based inferences. Interestingly, causality statements are usually avoided by

statisticians who prefer to use association notions. For example, Lindley and Novick (1981) avoid

its use because “causality, although widely used does not seem to be well-defined”. Speed (1990)

suggests that “considerations of causality should be treated as they have always been treated ins

statistics: preferable not at all but, if necessary, with very great care.” The concept of probabilistic

causal inference is perhaps one of the most difficult and important issues in probability and statistics.

It has deep consequences for scientific analysis, and for the manipulation of cause factors. This paper

presents a valid approach to deal with this topic.

Science is build for the sake of curiosity, as humans usually like to learn about causal relation-

ships. But science is also developed with operational aims, and particularly to obtain optimal results

indirectly through the use of causal relationships. Some philosophers even define causality as rela-

tionships that are potentially exploitable for purposes of manipulation and control, i.e. A causes

B if we can manipulate A to change B. This idea is the cornerstone of manipulability theories of

causation. It is also advocated in experimental design, where causal relationships are associated to

situations where an effect is manipulated varying the cause factor.

Causality operations can be designed optimally. Consider a family of causal relationships {(Az, Bz)}z∈Z
where Az ⇒ Bz for all z ∈ Z, and we have the possibility of setting z ∈ Z. Then we can consider
the optimal decision

max {U (Bz) : z ∈ Z} .

where U (·) is a utility function. In the context of probabilistic causation, if we assume that Az

causes Bz almost surely for all z ∈ Z, and we have the possibility of setting z ∈ Z, then we can
consider the stochastic optimization problem

max {U (Bz) : z ∈ Z, P (Az ∩Bc
z) = 0} ,

where U (·) is a utility function for uncertain results, e.g. we can consider a expected utility approach
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with U (Bz) =
R
Bz

udP. In a similar way we can consider ε-causality,

max {U (Bz) : z ∈ Z, P (Az ∩Bc
z) ≤ ε} .

The numerical solution of these problems can be addressed using stochastic optimization based on

scenario approaches.

For example, consider a probability space (Ω,F , P ) where P has positive measure at a finite

number of scenarios {(ωs, Ps) , s = 1, ...,m} , then

U (Bz) =
mX
s=1

u (ωs) · δBzs
· Ps.

where δB
s
= I (ωs ∈ B) , and the problem is

max

(
mX
s=1

u (ωs) · δBzs
· Ps : z ∈ Z,

mX
s=1

δAz
s

³
1− δBz

s

´
· Ps = 0

)
.

with I (ωs ∈ Az ∩Bc
z) = δAz

s

³
1− δBz

s

´
. This problem can be solved using numerical algorithms for

mixed integer programming.

APPENDIX A: CONDITIONAL PROBABILISTIC CAUSATION

Physical laws can be described at different coarse levels of detail.There might be causal relation-

ships that are valid relatively to a specific level of analytical detail, but not in general. To define

finer structures, we can use a conditional probability with respect to some event C with P (C) > 0.

Therefore, I define:

Definition Conditional causality. Given a probability space (Ω,F , P ) , for any sets A,B ∈ F I
say A causes B almost surely conditioned to C ∈ F with P (C) > 0 if, P (A ∩Bc|C) = 0 a.s.
(or equivalently if E [I (A) · I (Bc) |C] = 0 a.s.), and I denote it by A a.s.[P |C]⇒ B.

The condition P (A ∩Bc|C) = 0, is equivalent to P ((A ∩ C) ∩Bc) = 0, and whenever P (A) > 0 it

is equivalent to P (C ∩Bc|A) = 0. In other words, ifA,C have non null probability, thenA a.s.[P |C]⇒ B

if and only if C
a.s.[P |A]⇒ B if and only if (A ∩ C) a.s.[P ]⇒ B. Therefore conditional probabilistic causality

is just a form of unconditional causality, and the use of a conditioning event C simply imposes a

restriction A∩C over the causal event A. However, for testing purposes E [I (A) · (1− I (B)) |C] = 0
the use of conditional causality can lead to alternative statistical procedures, particularly when

random variables and/or stochastic processes are considered.
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The almost surely conditional causality can be relaxed. Given a probability space (Ω,F, P ) , for
any sets A,B ∈ F and any � ∈ (0, 1), I say that A causes B in terms of �−probabilistic causality
conditioned to C ∈ F with P (C) > 0, if P (A ∩Bc|C) ≤ �. The minimum value � is the C-

conditional ε-tolerance. Notice that if A,C have non null probability, then

P (A ∩Bc|C) = P (A ∩ C ∩Bc)

P (C)
=

P (A)

P (C)

P (A ∩C ∩Bc)

P (A)
=

P (A)

P (C)
P (C ∩Bc|A) ;

so that P (A ∩Bc|C) ≤ � if and only if P (A ∩ C ∩Bc) ≤ �P (C) , or equivalently if

P (C ∩Bc|A) ≤ �P (C) /P (A) .

Therefore, if P (A ∩Bc|C) ≤ � with 0 < P (C) ≤ P (A) , I conclude that P (C ∩Bc|A) ≤ �.

In many instances, ε-probabilistic causality can be only obtained conditional to certain levels of

detail. But, since conditional probabilistic causality is just a form of probabilistic unconditional

causality from A ∩ C to B, I will not stress this case in this paper.

APPENDIX B: ROBUSTNESS

Next we discus the robustness of probabilistic and sequential causality against changes probability

measurement. Given a measurable space (Ω,F) , consider two probability measures P , Q. Assume
that A

a.s.[P ]⇒ B, under which conditions is it straightforwardly satisfied that A
a.s.[Q]⇒ B without the

need of further checking? The answer lies on the notion of absolutely continuity.

We say that a probability measure Q is absolutely continuous with respect to the probability

measure P , both probability distributions defined on (Ω,F) , if P (A) = 0 implies that Q (A) = 0
for all set A ∈ F . This is denoted by Q << P. Furthermore P and Q are orthogonal if Ω can be

partitioned in two disjoint sets ΩP , ΩQ such that P (ΩQ) = 0 = Q (ΩP ) , and denoted by P ⊥ Q.

For any A,B ∈ F ,

• if Q << P then A
a.s.[P ]⇒ B implies that A

a.s.[Q]⇒ B,

• if Q << P and P << Q then A
a.s.[P ]⇒ B if and only if A

a.s.[Q]⇒ B

In general P and Q have no need to be neither absolutely continuous nor orthogonal. Assume

that Q, P are absolutely continuous with respect to a measure µ defined on (Ω,F) , then the Radon-
Nikodym derivatives with respect to µ (densities) p, q exist (where p and q are measurable functions

defined from Ω → [0,∞), such that P (A) = RA pdµ and Q (A) =
R
A qdµ for any set A ∈ F). The
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Lebesgue decomposition states that we can decompose Q = Qac +Q⊥ where Qac << P and Q⊥ is

orthogonal with respect to P. It is given by

Qac (A) = Q (A ∩ {p > 0}) , Q⊥ (A) = Q (A ∩ {p = 0}) ,

for all measurable set A, and the orthogonality is satisfied setting ΩP = {p > 0} and ΩQ = {q > 0} .
It can be proved that

Qac (A) =

Z
A

q

p
dP,

where we set q/p = 1 if p = q = 0 and p/q = ∞ if p > q = 0. The expression q/p is the

likelihood ratio, and it is equal to the Radon-Nikodym derivative dQac/dP (Q- a.s.). Clearly, Q⊥

is the component that generates incongruences between causality relationships based on Q and P.

If Q << P then Q⊥ is the null measure and the a.s. causality relationships are invariant to this

change of probabilities. Otherwise the maximum distortion is bounded by Q⊥ (Ω) . Note that Q <<

P if and only if Q (p = 0) = 0 if and only if
R
(q/p) dP = 1. Therefore a measurement of relative

consistency of P causation with respect to the measure Q is given by

T (Ω) = 1−
Z
Ω

(q/p) dP =

Z
Ω

(1− (q/p)) dP ≥ 0.

In particular, assume that P (A ∩Bc) = 0, if T (A ∩Bc) =
R
A∩Bc (1− (q/p)) dP = 0 the result is

also true under Q.

Next we discus the invariance of sequential causality relationships under changes of probability

measurement. Consider a sequence {(Ω,Fn, Pn)}∞n=1 , and {An} causes B sequentially for {Pn} .
Assume that an alternative researcher develops an alternative theoretical and experimental procedure

that generates the sequence {(Ω,Fn, Qn)}∞n=1 . When can we assure that A causes B sequentially

for {Qn} , provided that this happens for {Pn}? The key idea is the notion of contiguity, developed
by Le Cam (1960, 1985). A sequence of probability measures {Qn} is contiguous with respect to
other sequence {Pn} if limn→∞ Pn (An) = 0 implies that limn→∞Qn (An) = 0, for every sequence of

measurable events An, and this is denoted by QnCPn. I say that Pn and Qn are mutually contiguous

if QnCPn and PnCQn, and this is denoted by QnCBPn. For any {An} with An ∈ Fn, and Bn ∈ F ,

• if QnCPn then {An} asymptotically causes Bn sequentially respect to {Pn}, implies the same
with respect to {Qn}

• if Qn CBPn. then {An} asymptotically causes Bn sequentially respect to {Pn}, if and only if
the same is true with respect to {Qn} .
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We can characterize contiguity when there is a measure µ such that Pn and Qn are absolutely

continuous with respect to µ for all n, with pn = dPn/dµ and qn = dQn/dµ. We define dQn/dPn =

qn/pn if pn > 0, dQn/dPn = 1 if pn = qn = 0 and equal to infinite if pn > qn = 0. Given a sequence

of measurable functions {fn} , f all of them defined from Ω→ Rk, we denote the weak convergence

with respect to the probability measures {Pn} by fn −→w.[Pn] f. The first Lemma of Le Cam states

that the following statements are equivalent, (1) Qn C Pn, (2) If dPn/dQn −→w.[Qn] U along a

subsequence, then P (U > 0) = 1, (3) If dQn/dPn −→w.[Pn] V along a subsequence, then E [V ] = 1,

(4) for any statistics Tn : Ω → Rk, if Tn
Pn−→ 0 then Tn

Qn−→ 0. The proof can be found in van der

Vaart (1998, Chap. 6).

We define the expression Tn (A) =
R
A
(1− (qn/pn)) dPn. Then Tn (A ∩Bc) is a measurement of

relative consistency of {Pn} sequential causation with respect to the measures Qn. The sequence

Tn (Ω) −→w.[Pn] T = 1− E [V ] = 0 iff Qn C Pn.
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