This document is published in:

Delgado Kloos, C. et al. (eds.) (2011). Towards Ubiquitous Learning: 6th European
Conference of Technology Enhanced Learning, EC-TEL 2011, Palermo, Italy, September 20-23,
2011. Proceedings (Lecture Notes in Computer Science, 6964), Springer, pp. 341-355.
DOI: 10.1007/978-3-642-23985-4_27

© 2011 Springer-Verlag Berlin Heidelberg

http://dx.doi.org/10.1007/978-3-642-23985-4_27

Usage Pattern Recognition
in Student Activities

Maren Scheffel!, Katja Niemann', Abelardo Pardo?,
Derick Leony?, Martin Friedrich!, Kerstin Schmidt?,
Martin Wolpers!, and Carlos Delgado Kloos?

! Fraunhofer Institute for Applied Information Technology FIT,
Schloss Birlinghoven, 53754 Sankt Augustin, Germany
2 Universidad Carlos III de Madrid,

Avenida Universidad 30, E-28911, Leganés (Madrid), Spain
{maren.scheffel,katja.niemann,martin.friedrich}@fit.fraunhofer.de,
{kerstin.schmidt,martin.wolpers}@fit.fraunhofer.de,
{abel,dleony, cdk}@it.uc3m.es

Abstract. This paper presents an approach of collecting contextualized attention
metadata combined from inside as well as outside a LMS and analyzing them to create
feedback about the student activities for the teaching staff. Two types of analyses were
run on the collected data: first, key actions were extracted to identify usage patterns
and tendencies throughout the whole course and then usage statistics and patterns
were identified for some key actions in more detail. Results of both analyses were
visualized and presented to the teaching staff for evaluation.

Keywords: attention metadata, usage monitoring, teacher feedback.

1 Introduction

Collecting data about how students interact with each other, the teaching staff
and learning objects is becoming increasingly complex. Traditional approaches
place a Learning Management System (LMS) at the center of these interac-
tions [1]. Such systems are typically used as a container to store learning re-
sources supplied by the teaching staff and offer a variety of services to capture
the interaction between the users and other elements, e.g. discussion forums,
quizzes, wikis, blogs, etc. This approach can be called a “LLMS-centric” one. With
the arrival of the Web 2.0, however, this approach is no longer functional [2].
Learning activities, sometimes even without the consent of the instructors, often
take place within numerous applications that are hosted outside the LMS. Some
of these activities may explicitly require the use of certain tools that must be
installed outside the LMS, e.g. an editor, and others require students to search
for auxiliary material that is not stored in the LMS.

The use of tools not hosted in the LMS is specially common in experimental
sciences [3] where students are usually required to learn procedures with specific
tools either installed on their personal computers or on equipment made available

by the educational institutions. This fact and the tendency of students to access
an increasing number of resources outside an institution’s LMS [4] gives rise to
the need for more sophisticated data collection mechanisms.

This paper presents an approach of collecting usage data from inside a LMS
(i.e. forum interactions) and outside a LMS (i.e. use of a virtual machine as a self-
contained course environment) and analyzing them to create teacher feedback about
the course they were taken from. In section 2 we motivate our approach and present
previous works connected to this topic while section 3 describes what kind of usage
data we collect, how we collect it and how we store it. After explaining the analysis
methodologies we employed in section 4, analysis results are presented in section 5.
Finally, section 6 concludes our paper and discusses further work.

2 Related Work

Modifying a learning scenario based on user observations is a research topic
that has been attracting significant attention. Areas such as intelligent tutoring
systems [5] propose the design of applications that observe and react to the user
actions. But these applications have the same drawbacks as LMSs: If a learning
experience occurs in a context not only involving the tutoring system, the truly
valuable observations would most likely be those of the student interacting with
the whole environment, and not only the ones with the tutor.

Zinn and Scheuer [6] conducted a survey among teachers trying to identify
requirements for student tracking tools. Among the information deemed mostly
important were the students’ overall success rate, the mastery level of concepts,
skills, methods and competencies as well as the most frequently diagnosed mis-
takes. As for the reasons why they would employ student tracking at all, most
teachers said that they would like to be able to respond to individual students,
adapt their teaching and identify problems of understanding the material. One
such approach to provide teachers with feedback about their courses is described
by Jovanovic et al [7]. They present a tool called LOCO-Analyst that analyses
user tracking data based on an ontological framework. It was developed specifi-
cally for online learning courses and thus only collects data from within the LMS.
Kosba et al [8] also present a framework that generates feedback for teachers from
tracking data collected within a course management system. Here, however, the
generated advice bases on student, group and class models which are computed
with the help of certainty factors and fuzzy set theories. Again, the system was
applied to an online (distance) learning course. TADA-Ed (Tool for Advanced
Data Analysis in Education) is a data mining tool by Merceron and Yacef [9]
with the aim to support teachers in discovering pedagogically relevant patterns
in user activity data collected in online exercises using a web-based tutoring
system. Therefore, it offers visualizations of simple statistics (e.g. mistake fre-
quency) and results of data mining algorithms (e.g. clustering students based on
the concepts of their mistakes). However, TADA-Ed presupposes that the users
(i.e. teachers) are familiar with data mining techniques and competent enough
to choose and apply them as well as to analyze their results which can be quite
complex.

Extending the range of observable events in learning environments is not a
trivial task. In principle, a student may engage in a course activity interspersed
with other activities or at unexpected times. In the rest of the paper the concept
of observability will be restricted to the realm of computer use. Given the wide
variety of applications and systems that can potentially be used in a course, it
seems obvious that an important improvement would be to move the recording
capabilities outside of the LMS and onto the students’ personal computer. There
are already certain applications that record these events which can then be
shared in a community of users (e.g. Wakoopa!). In a learning environment
though, the need is to monitor only those events that are related to the course.

3 Data Collection

This section describes what usage data was collected and how. First, the schema
in which the collected data is stored is explained. We then present the data
collection processes from several sources and finally address data privacy issues.

3.1 Contextualized Attention Metadata

The Contextualized Attention Metadata (CAM) schema allows modelling a
user’s handling of digital content across system boundaries [10]. As CAM was
developed to describe as many types of attention metadata as possible, CAM
records of a user cannot merely describe the user’s foci of attention but rather his
entire computer usage behaviour. The latest version? is better suited for eval-
uating and analyzing user observations due to its event centredness. Figure 1
shows an image of the new schema.

(1.n) (O.n)

entity

has

Fig. 1. Contextualized Attention Metadata (CAM) Schema

While the older versions of the CAM schema revolved around the user, the
new schema has the event element as its entry point. Every user action is de-
scribed by one event, e.g. UserA sends MessageX to UserB in ApplicationY

! http://wakoopa.com/
2 More information and software about CAM can be found at
https:/ /sites.google.com/site/camschema/home

and several attributes define this event in more detail: the name attribute (name
of the event, e.g. open - for opening a document) and the dateTime attribute
(timestamp of the event, e.g. 20111504-123428). As opposed to these two at-
tributes, the sharing level attribute is optional. Every event is connected to
at least one session and every session can be defined by attributes for IP
address, domain, and a relative sessionID.

An event can be connected to several entities that represent the partic-
ipants of this event. The connected entity has to be further specified with a
role, e.g. in the action mentioned above UserA has the role sender, UserB has
the role receiver. Entity elements are defined by attributes for name, MIMEtype,
type and reference. An entity in turn can have metadata attached to it. This
metadata element is defined by a binding, MDtype, MDinstance and MDhash.

Due to the simplicity of this schema, a lot of knowledge has been moved to
the role attributes. Also, the schema now requires rules to be enforced on the
instances that go beyond simple cardinality restrictions, that is, the cardinality
depends on the type of the value of role. For example: if there is a related
entity with the role attribute receiver, there needs to be exactly one related
entity with the role attribute sender.

CAM can be analyzed to provide an overview about where (i.e. with which
application) and when an action takes place and what happens in the environ-
ment. CAM analyses enable the discovery of popularity, usage bursts and trends
of tools. Information about when an action takes place can be useful in con-
trolled environments such as formal learning environments where activities are
usually scheduled. It is also quite useful in less controlled or more blended en-
vironments to understand when learners are actually active. The next sections
therefore describe how CAM was collected during programming courses at the
Universidad Carlos IIT de Madrid and then analyzed.

3.2 Collecting Data from the Virtual Machine

The concrete scenario where our approach has been deployed was a second year
course of an engineering program. The course topic was C programming using
mobile devices, and students were supposed to use a set of industry-type tools as
well as work in teams for the course activities. The proposed approach consisted
of offering the students a fully configured virtual machine containing all the tools
required to carry out the course activities. A virtual machine is a self-contained
computer captured in a single file that can be emulated by a client application in
a different computer. This emulation is also called “virtualization” and has been
considered in some learning scenarios to eliminate configuration problems [11].
The virtual machine was created by the teaching staff before the beginning
of the course with a configuration specially tailored to the course activities.
As part of that configuration, the main tools inside the virtual machines have
been modified so as to record certain events in an internal database. Those
recorded events were regularly relayed to a central server that collects them.
The virtual machine made available to the students has been configured with the
following tools: compiler, debugger, memory profiler, file editor, version control

system, emulator, command line interface, browser and an integrated virtual
environment (IDE).

A significant number of course activities require writing code fragments and
testing their execution. The compiler, debugger and memory profiler are required
to carry out these tasks. For the compiler the date and time when the compi-
lation is invoked, the error and warning messages, and the final status of the
compilation are recorded. The debugger is essential when developing C appli-
cations and students must be proficient in its use. The date and time the tool
was started and closed, as well as all the commands used during the session are
stored. The memory profiler executes and detects memory leaks. The invocation
and the messages produced by the application are recorded together with a time
stamp. The Command Line Interface is being used in the course to invoke most
of the tools as well as carrying out regular operations such as creating folders,
moving files, etc. Therefore, all commands are stored together with a time stamp.
C programs can be edited either using a regular file editor or an integrated vir-
tual environment. The programs are shared among team members and with the
teaching staff using the version control system Subversion®. The date and time
when the editor or IDE are invoked and closed are recorded. Additionally, the
browser can be considered as yet another development tool that students will
use frequently while working in the course. For that reason, it is also used to
retrieve the visited URLs.

Each tool stores the recorded events at a fixed location in the user’s home
folder. Users should be able to easily enable/disable the recording mechanism.
This feature has been implemented as a simple test for the existence of the folder
where the events are recorded. If such folder is removed, the tools no longer record
any event. The client application of the version control system Subversion was
modified so that every commit operation that sends the current version of a file
to the server would actually send two sets of changes: The normal set of changes
in the files of the specified directory, and a second set of changes including all
the files with the events recorded from the last transmission. As a consequence,
every time a student submits a new version of a project, all recorded events are
submitted to the server. The transmission has been deployed so that the system
works incrementally and only those events produced from the last transmission
are sent. Typically, a Subversion repository requires user authentication. As they
are part of the same subversion session, the recorded events are submitted to the
server with the same user authentication as the rest of files. Once the recorded
events are submitted they are transformed into CAM instances.

3.3 Collecting Data from the LMS

Extending the observation of student tasks outside of the LMS does not mean
that the data collected inside the LMS is no longer valid. On the contrary, the
events taking place in the LMS are yet another ingredient to add to the overall
observation mechanism.

3 http://subversion.apache.org/

The analysis of usage behaviour within the LMS is made possible by reworking
the Web server logs of the system. Every line in the log file represents one
event and contains information such as date and time, the initiator’s user id,
type of event, etc. After collecting the logs a grammar consisting of regular
expressions was constructed. With the help of this grammar the logs can be
grouped into meaningful user actions. For example, the complex event of posting
a new message in a forum consists of several single user-initiated actions in the
logs (i.e. the user needs to click on a new post button which initiates the loading
of a new page, where he can write the post to then click on the send button
which initiates the loading of the forum page with the new message).

Given this file and the stored logs, an event was created whenever a pattern
was identified and transformed into a CAM instance. Any static information
needed for later analysis but not contained in the log files, e.g. name of a course,
were pulled from the database the LMS is based on. Using this approach, events
such as posting in a forum, replying to a post, looking at a message, logging in
or logging out can easily be detected in the server logs.

Due to synchronized server time between the virtual machine and the LMS
merging of the CAM instances from the two was unproblematic. The combined
data were then stored in a relational database from which all further analyses
were done.

3.4 Data Privacy Issues

Extending the observation of student activities with the described approach
poses certain concerns on data privacy. The first observation is that by using a
virtual machine, only those events that take place inside the machine (and not
on the host) are being recorded. Students are instructed at the beginning of the
course to use this machine only for course related tasks. By simply adhering
to this policy (which cannot be strictly enforced), the recorded events are all
relevant.

But current legislation about data privacy imposes additional constraints that
have to be reflected in the deployed system. The first one is that users should
be made explicitly aware of the type of data that is being collected. The virtual
machine was configured so as to start with a user session with the browser
showing a page explaining the details of the recording mechanism. Second, the
recording system must be easily disableable by the user. As it was described
in the previous section, the presence or absence of a concrete folder is used to
switch the system on or off respectively. And third, and most importantly, users
need to be made aware of how to contact the person/institution in charge of the
data because they maintain the right to query and request the deletion of any
of the data.

4 Analysis Methodologies

Two types of methodologies have been applied to the collected CAM. In a first
step we extract key actions to identify usage patterns and tendencies throughout

the whole programming course. Then, in a second step, some sequences of events
are looked at in more detail and usage statistics and patterns for these sequences
are identified.

Our first approach, extracting key actions, is to analyze CAM with tech-
niques used in the research field of computational linguistics, that is, we transfer
methodologies from text analysis to action analysis and try to find patterns
within the recorded activities. Languages are rule-governed [12], i.e. they are
based on patterns and structures. We exploit this fact and apply methodologies
to detect and analyze such patterns to CAM by mapping linguistic concepts to
the respective parts of CAM instances which is, however, not a simple one to one
mapping. The concepts word and action can quite easily be seen as analogous
but sentence and session cannot: While sentences are fixed linguistic categories,
sessions describe a concept of time with a variable beginning and end (e.g. an
hour, a few minutes, a month, a year, etc.). Mapping session to the concept of
text, i.e. a collection of sentences, possibly makes more sense. As the word-to-
action-mapping is very reasonable, we start our approach of detecting meaningful
patterns from CAM by transferring methods from keyword extraction to key ac-
tion extraction. The content of a document can be semantically represented by
keywords [13]. We thus assume that key actions can semantically represent the
session they are taken from. In order to find repeated string patterns we ana-
lyze the collected CAM with the so-called n-gram approach [14]. The following
example illustrates the technique in a simplified way:

0A1B2C3A4Bs5DgB7CgAgBighAi1 Ai12Ci3Dyy

The letters represent a sequence of actions while the numbers indicate the posi-
tion of the actions within the sequence. In a first step, all possible monograms
are extracted:

A [0,1],(3,4],[8,9],[10,11],[11,12] C [2,3],[7,8],[12,13]
B [1,2],[4,5],[6,7]’[9,101 D [5,6],[13,14]

The merging of n-grams is possible if the frequency of the new key action is
above a set threshold. Lets assume the threshold in this example was set to 2.
As no monograms are below that threshold, none get discarded from further
calculations. In a next step, all possible bigrams are extracted by trying to
combine the monograms with one another:

AA [10,12] BC [1,3],[6,8] CA [2,4],[7,9]
AB [0,2],[3,5],[8,10] BD [4,6] CD [12,14]
AC [11,13] BA [9,11] DB [5,7]

The bigrams AA, AC, BD, BA, CD and DB only occur once. Hence, they are discarded
from further calculations and can consequently neither be a key action nor part
of one. Additionally, if shorter sequences are contained in longer ones, the shorter
ones are no longer part of further calculations and thus no key action candidate.
In our example the monograms A, B and C are discarded but the monogram D

stays as it is not contained in any of the remaining bigrams AB, BC and CA. These
now pose as the basis for trigram extraction, those are turned into tetragrams,
then pentagrams and so forth. Calculations end when no further n-grams can
be merged. Our example ends with two n-grams, namely the twice occurring
tetragram BCAB and the monogram D, and thus two key actions.

Once the key actions are identified, our second approach is to look at some
of them in more detail. Depending on the domain of interest or the focus of the
analysis, some actions can be deemed more important than others and a detailed
analysis can help the teacher to become more aware of what problems students
might run into. Once the sequences to be looked at in more detail are identified,
they can be analyzed further and displayed to the teachers, e.g. in the form
of text files, tables or diagrams. Interesting analyses can, for example, be the
distribution of certain events over time or students, common subsequent actions
of relevant actions in the current domain, anomalies, tendencies or regularities
in the usage behaviour.

5 Analysis Results

To analyze and evaluate our approach we collected data from the C programming
course mentioned above. First we extracted key actions from the collected data
on several granularity levels and presented our results to the teaching staff. Then
we ran several pattern detection analyses on those actions identified as worth
looking at by the teachers in more detail and presented the results to the teaching
staff again.

5.1 Key Action Extraction

The C programming course that our analyses base on took place from Septem-
ber 6th until December 16th, 2010 and 244 students attended the course. In
that period of time, around 10,000 sessions were recorded comprising a total
of 119,652 events which in turn contained 19 different event types. There are
some events that do not contain any additional information as the event name
itself as well as the date and time of occurrence (e.g. startDebuggerGDB or
endTextEditorKate). However, most events contain one additional attribute,
e.g. the ID of the viewed message for the event viewMessage, the error message
for an unsuccessful compile event or the URL for the event visitURL.

In order to find key actions, i.e. frequent patterns in the data, we distinguish
between two granularity levels of the data: a short and a long version. In the
short version, only the events and their timestamps are considered but no fur-
ther attributes. In the long version, all attributes (e.g. forum IDs and warning
messages) are completely used for the calculation of key actions. There is one
exception for the event visitURL that can be combined with the short or with
the long version, i.e. only the domain of the URL can be considered instead of
using the whole URL (long version) or no URL at all (short version). For ex-
ample, we would assume the pattern of several students getting the same error

and conducting a google search subsequent as very meaningful, even if they do
not use the exact same query terms. If we want to detect such patterns, we need
to use the long version, but shorten the URLs of the event visitURL to their
domain.

As exploratory investigation, all variations were calculated with a threshold
of 5 as well as 10. We extracted key actions on the basis of the whole course, that
is, all sessions from all users were taken into account at the same time. Thus, if
an action was identified as a key action with 15 occurrences, it could be due to
several different users executing the action but also to one user executing it 15
times.

A visualization for the results was implemented and given to the teaching staff
for evaluation. The version deemed most useful to deduce meaningful things from
was the long version with the threshold set to 10. By analyzing the sequences
of event patterns, the teachers discovered several situations interesting to them
as they denoted incorrect procedures. Figure 2 shows an example of such a
visualization. The darker boxes mark the first event of a key action sequence.
The key action sequence in the upper right corner for example starts with a
gotoForum event, followed by viewMessage, another gotoForum event and two
more viewMessage events.

7 D o .
FZmx Debugger cOB T
@7 O e

command
@ goto
‘% DebuggnerGDB @ ;;.:‘ugn;
;3;‘ De::gmg::rgDB @f"’ M::i::ge
106037
By Debugger 0B el AEE
e -

3 end start end oomplle
TngdImr Tbxrsdlmr hxtﬁdlmr | GCC
success

Fig. 2. Visualization of extracted key actions

Some sequences identified as interesting by the teaching staff contained events
where the text editor was started and ended. This points to development flows
in which for each compilation, students opened a file with the editor and closed
it again before compiling. According to the teaching staff this translates into
a significant increase in the development time and should be corrected. Other
sequences of events to access the course material also pointed to some possible

corrections. The course material was available through a direct link as well as
through a redirection at a second official location. The second route was followed
by a significant number of users, thus pointing to the need for a teacher to em-
phasize how to quickly access the course material. Another example identified
as an important one were sequences where tools such as the debugger or the
memory profiler were used several times which denotes the students’ difficulty in
understanding the anomalies detected by these tools. As the teaching staff con-
sidered error messages and the students’ reaction to them as especially valuable,
we analyzed these events in more detail.

5.2 Frequent Error Patterns

One of the most significant difficulties students face in introductory program-
ming courses is how to understand the messages returned by the compiler when
writing a program. There is an important gap between learning a programming
language and quickly identifying an anomaly spotted by the compiler during
development. This gap typically requires an unusually high amount of time from
students to be closed. Tutor assistance in these situations is very important.
However, even if the students are well aware of the fact that they are observed,
we cannot assume them to be aware of the effects that the analysis of their
data can have. We assume that showing a teacher some statistics of a user who
for example compiled several times getting the same (trivial) error over and
over again, might lead to the teacher getting negatively affected. Therefore, we
only showed statistics of errors that occurred at least 50 times in total for a
minimum of 10 users. Additionally, we made the students’ usage patterns more
abstract, e.g. too few arguments to function usernameTest was shortened
to too few arguments to function... . This process helps combining activ-
ities when looking for patterns but also keeps the anonymity of the students.

Within the collected data there were 17,266 compile events. 6,443 of them
were error messages, 3,190 were warnings and 7,633 events compiled successfully.
Figure 3 shows those errors with the highest frequency and that at least 25
different user received ordered by the number of students that got it. From this
diagram, instructors were able to easily identify those anomalies that require
clarification. Teachers liked the fact that with the obtained data, they may even
select a sample of the errors and use them as examples to guide students to
detect and correct the most frequent anomalies.

We also calculated the distribution over time of the most frequent errors
and asked the teaching staff to evaluate whether such a visualization can be
useful. Figure 4 shows the distribution of the most frequent error, i.e. ‘foo’
undeclared (first use in this function), over time and the number of
students that got this error. In total the error occurred 1048 times for a to-
tal of 92 users. As it can be seen, students encountered this error even in the
final stages of the course (when there was an increase on student load due to a
project deadline). According to the teaching staff corrective actions taken at the
beginning of the course might have helped to lower the error’s appearance.

10

‘foo’ undeclared (first use in this function) g 22 1048

too few arguments to function ...” p— 7417
expected ;' before '} token L 198
expected declaration or statement at end of input pE——— 262
expected identifier or ‘(" before ‘Y token & 142

dereferencing pointer to incomplete type puE————— 8 463
28

“for” loop initial declarations are only allowed in C99 mode puimm 134
two or more data types in declaration specifiers | —— 302
0 200 400 600 800 1000 1200

number of users getting the error W number of times the error occurred in total

Fig. 3. Distribution of the most frequent errors

200
150
100
50 %
0 By y " " e /\-'\
® S S S ® SIS

S N S o S
& & & & & &
> > > > > > > > » » » -
A2 0 d » 03 » B » N N N N
N N W % & Q- A oy A > NS a3
—e—number of times the error occurred number of students getting the error

Fig. 4. Error ‘foo’ undeclared (first use in this function) over time

Figure 5 shows the distribution over time of the error two or more data
types in declaration specifiers. In total it occurred 302 times for a total
of 27 users. The error disappears over time which, according to the teaching
staff, shows that the main problem of understanding why the error occurred got
solved by the students. However, as the error occurred very frequently at the
beginning of the course, teacher support could have helped in improving the
learning curve faster.

Another interesting aspect the teaching staff wanted to have more detailed in-
formation about was what the students did after getting error messages, i.e. what
kind of events were compile error events followed by. We therefore created
some diagrams to help identify more precisely the nature of the errors encoun-
tered by the students. Figure 6 displays the actions that students performed
directly after receiving the error message ‘foo’ undeclared (first use in
this function). It confirms that the error is persistent, that is, it tends to ap-
pear again in the next compilation. This information is essential for teachers to
pinpoint those anomalies that students are not understanding, thus giving rise
to important time delays.

1"

60
50
40
30

20

g .
S S S o N S S S S S S o
N N N N N & & & & & S S
v v v v Vv v v v v v v v
2 2 5 D D » > > N N N N
> > Vv > S RV A » A W 2 o
—e—number of times the error occurred number of students getting the error

Fig. 5. Error two or more data types in declaration specifiers over time

Figure 7 shows the detail of a third compilation error, i.e. expected ¢;’
before ‘}’ token. It occurred 198 time in total for a total of 45 users. In
this case we can see that the next events are sometimes a correct compilation,
sometimes the appearance of some warnings, and in some other cases the error
re-appears. This error clearly does not have the “road-block” nature, i.e. not
knowing what to do next and trying random changes in the code, identified in
the previous two.

same compilation error again 135

another compilation error 89

compilation successful (with warnings) EEEE — T TTE—— | 77
start text editor Kate e ————— 13
end text editor Kate p—————— 13
visit URL "http://www.it.uc3m.es/ —— 21
go to forum d 9
compilation successful (without warnings) -g

start the memory profiler Valgrind -6

0 20 40 60 80 100 120 140 160

number of users getting the error W number of times the error occurred in total

Fig. 6. First actions after error ‘foo’ undeclared (first use in this function)

These diagrams show the power of offering visualizations of events occurring in
every-day student work sessions to the teaching staff. If these events occurred in a
face-to-face session, the instructor would quickly point the students to techniques
to identify and solve the anomaly. With the proposed paradigm, these patterns
can still be detected and brought to the attention of the instructor when they
occur in any course working session and as a consequence of the analysis of
these data, several corrective actions can be deployed by the instructors. They
may range in complexity from discussing the most common mistakes in class
and making sure students identify the errors correctly, to an automatic support

12

system that detects when certain specific errors are produced by the compiler
and some additional explanation is given live to the student (a pop-up message,
an email, a URL pointing to a more detailed explanation, etc.).

complaion succesful(with warnings) | 10
e oo e . ——— 20
. . 12
S oo e g | 2

visit URL "http://www.google.es/" [g

. 6
endtexteditor te . e 10
0 5 10 15 20 25
number of users getting the error W number of times the error occurred in total

Fig. 7. First actions after error expected ¢;’ before ‘}’ token

6 Conclusion

In this paper an approach to analyze user activities and detect usage patterns
in the context of a programming course has been presented. Contextualized At-
tention Metadata (CAM) was used to represent the multiple events occurring in
a learning environment. The capturing mechanism employed extends the con-
ventional methods that rely solely on those events recorded in the logs of a
Learning Management System. A virtual machine specifically configured for the
course was distributed among students for the purpose of being used in all the
course activities. This machine deployed a high coverage recording mechanism
for the events occurring in the previously installed tools. These observations were
also complemented with the corresponding events derived from the LMS.

Once the events have been captured, techniques were applied to first extract
key actions from the collected data, and then to identify usage patterns by ex-
ploring in detail sequences of events. With these techniques discovering patterns
in large collections of events was successful where no manual technique is feasible.

The procedure was validated by applying it to an undergraduate engineering
course on introductory programming in C and a large number of events was
collected (almost 120,000 events of 244 students). First a visualization of the
key actions (i.e. frequent patterns of events) was produced. The visualization
showed certain sequences that clearly point to corrective actions to be deployed.
Second an analysis of the most frequent error patterns was performed. Based on
this analysis, the teaching staff identified some errors as most problematic that
should be discussed in more detail in the course.

Two approaches are considered as future research lines. The first is to support
reflection and awareness of students. Self-reflection allows students to meta-
cognitively assess, analyze and evaluate their learning processes. It is also an

13

essential part of self-regulated learning [15]. Furthermore there is the need for
direct feedback to the students in their learning environment [16]. This can be
accomplished by using the version control system to transfer information directly
into the user desktop.

For the second approach, the reflection and awareness support of the teachers,
we will embed the graphical analyses that the teaching staff graded as especially
helpful in our tool. This will enable the teachers to directly react in class on
the usage patterns of the students. Once the merit of the approaches has been
established by the experimental results, techniques for the automation of the
corrective actions can be explored. Taking advantage of the use of the virtual
machine, an algorithm that reacts when certain patterns are detected can be
designed and deployed. Furthermore, the detection algorithms can be refined
as to tackle specific problems within a course. The teaching staff may describe
activities that might require a closer analysis so that more targeted corrective
actions can be discovered.

Acknowledgements. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme (FP7,/2007-
2013) under grant agreement no 231396 (ROLE project). Work was also par-
tially funded by the Learn3 project (TIN2008-05163/TSI), the eMadrid project
(S2009/TIC-1650), and the Accién Integrada DE2009-0051.

References

1. Ertugrul, N.: Towards virtual laboratories: A survey of LabVIEW-based teach-
ing/learning tools and future trends. International Journal of Engineering Educa-
tion 16(3), 171-180 (2000)

2. Chatti, M.A., Jarke, M., Frosch-Wilke, D.: The future of e-learning: a shift to
knowledge networking and social software. International Journal of Knowledge and
Learning 3(4), 404-420 (2007)

3. Auinger, A., Ebner, M., Nedbal, D., Holzinger, A.: Mixing content and endless
collaboration—-MashUps: Towards future personal learning environments. Univer-
sal Access in Human-Computer Interaction. Applications and Services, pp. 14-23
(2009)

4. Waycott, J., Bennett, S., Kennedy, G., Dalgarno, B., Gray, K.: Digital Divides?
Student and Staff Perceptions of Information and Communication Technologies.
Computers & Education 54(4), 1202-1211 (2010)

5. Woolf, B.P.: Building intelligent interactive tutors. Morgan Kaufmann, San Fran-
cisco (2008)

6. Zinn, C., Scheuer, O.: Getting to Know Your Student in Distance Learning Con-
texts. In: Nejdl, W., Tochtermann, K. (eds.) EC-TEL 2006. LNCS, vol. 4227, pp.
437-451. Springer, Heidelberg (2006)

7. Jovanovié, J., Gasevié, D., Brooks, C.H., Devedzié, V., Hatala, M.: LOCO-Analyst:
A Tool for Raising Teachers’ Awareness in Online Learning Environments. In:
Duval, E., Klamma, R., Wolpers, M. (eds.) EC-TEL 2007. LNCS, vol. 4753, pp.
112-126. Springer, Heidelberg (2007)

14

10.

11.

12.

13.

14.

15.

16.

. Kosba, E., Dimitrova, V., Boyle, R.D.: Using Student and Group Models to Support

Teachers in Web-Based Distance Education. In: Ardissono, L., Brna, P., Mitrovié,
A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 124-133. Springer, Heidelberg
(2005)

. Merceron, A., Yacef, K.: TADA-Ed for Educational Data Mining. Interactive Mul-

timedia Electronic Journal of Computer-Enhanced Learning 7(1) (2005)

Schmitz, H.-C., Wolpers, M., Kirschenmann, U., Niemann, K.: Contextualized at-
tention metadata. In: Roda, C. (ed.) Human Attention in Digital Environments,
pp. 186-209. Cambridge University Press, Cambridge (2011)

Gaspar, A., Langevin, S., Armitage, W.D., Rideout, M.: March of the (Virtual)
Machines: Past, Present, and Future Milestones in the Adoption of Virtualization
in Computing Education. Journal of Computing Sciences in Colleges 23(5), 123—
132 (2008)

Sag, I.A., Wasow, T.: Syntactic Theory — A Formal Introduction. Center for the
Study of Language and Information, Stanford (1999)

Rose, S., Engel, D., Cramer, N., Cowley, W.: Automatic Keyword Extraction from
Individual Documents. In: Berry, M.W., Kogan, J. (eds.) Text Mining, pp. 1-20.
John Wiley & Sons, Ltd., Chichester (2010)

Hulth, A.: Improved Automatic Keyword Extraction Given More Linguistic Knowl-
edge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2003, Stroudsburg, PA, USA, pp. 216-223. Associ-
ation for Computational Linguistics (2003)

Zimmermann, B.J.: Self-regulated learning and academic achievement: An
overview. Educational Psychologist 25(1), 3-17 (1990)

Butler, D.L., Winne, P.H.: Feedback and self-regulated learning: A theoretical syn-
thesis. Review of Educational Research 65(3), 245-281 (1995)

15

