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Abstract—Learning from non-stationary data requires meth-
ods that are able to deal with a continuous stream of data
instances, possibly of infinite size, where the class distributions are
potentially drifting over time. For handling such datasets, we are
proposing a new method that incrementally creates and adapts
a network of prototypes for classifying complex data received
in an online fashion. The algorithm includes both an accuracy-
based and time-based forgetting mechanisms that ensure that the
model size does not grow indefinitely with large datasets. We have
performed tests on seven benchmarking datasets for comparing
our proposal with several approaches found in the literature,
including ensemble algorithms associated to two different base
classifiers. Performances obtained show that our algorithm is
comparable to the best of the ensemble classifiers in terms of
accuracy/time trade-off. Moreover, our approach appears to have
significant advantages for dealing with data that has a complex,
non-linearly separable topology.

I. INTRODUCTION

Learning from non-stationary data, or Non-Stationary
Learning (NSL), has become a promising field specially with
the increasing availability of continuous data sources from
ubiquitous computing and networking devices.

The relation between Incremental Learning (IL) and Non-
Stationary Data (NSD) depends on the features of the data
source. Different research fields address topics specific to
applications of different nature, such as:

• Learning with Concept Drift [1]. Concept drift appears
when new data is not consistent with past data. This means
that some unobserved aspect of reality was correlated with
expected results, and varying values of that “hidden context”
must force variation on learned models. Most references
in this field assume a principle of batch learning, that is,
complete training data is available and can be processed
before the algorithm is requested to provide an answer.
• Learning from Large Datasets [2]. Defined as scenarios

where a huge amount of learning data is available, which
imposes constraints on the space required for representation.
• Learning from Data Streams. Defined by a continuous

stream of learning data, which makes preprocessing of data
unfeasible. These problems are also assumed to include
the restriction that data can only be read once (one-pass
learning) and usually assume non-stationarity of data [3].
A recent review of current techniques in this field can be
found in [4].
• Real-time Learning. A particular case of Learning from

Data Streams where hard time constraints are also imposed.

TABLE I. RELATION BETWEEN RESEARCH TOPICS AND FEATURES

REQUIRED IN THE ALGORITHMS. SP: SEQUENTIAL PROCESSING, OP:
ONLINE PROCESSING, ATR: ANYTIME RESPONSE, AC: ADAPTION TO

CHANGES, TI: TIME INVARIANCE, SI: SPACE INVARIANCE

Learning domain SP OP ATR AC TI SI

Concept drift Yes No No Yes Weak Weak

Large datasets No Yes Yes No No Hard

Data streams Yes Yes Yes Usually Weak Hard

Real-time from streams Yes Yes Yes Usually Hard Hard

Non-stationary data Yes Yes Yes Yes Weak Weak

The learner has to be ready to respond in a specific (usually
reduced) period of time. This may also require special-
purpose hardware for many applications [5].

An early definition from Aha [6] limits incremental learn-
ing to sequential processing of examples in an instance based
learning algorithm. This restrictive definition, however, pro-
vides little insight on the key issues of IL. Other more detailed
definitions [7]–[10] include a mixture of task features that
incremental algorithms need to address. They vary slightly
depending on whether the topic of the paper is related to
learning from large datasets, or to learning from data streams.

Table I summarizes the different application fields with
respect to the task and algorithm features, and specifies the
“Incremental Learning from Non-Stationary Data” field which
is the scope of our paper. Algorithms may be described in
terms of several features: Sequential Processing (SP), Online
Processing (OP), Anytime Response (ATR), and Adaptation to
Changes (AC). SP means that data is learnt as it arrives, thus
taking data ordering into account. OP implies that a complete
or final data set is never expected, data should be processed
in a single pass. ATR states that a prediction of the data class
label must be available at any time. Finally, AC specifies that
embedded class models must be able to adapt to changes in
data, either stationary or non-stationary.

Depending on the research topic, two constraints may also
be imposed on algorithms: Time Invariance (TI), and Space
Invariance (SI). TI means that each training sample should
be processed in constant time, regardless of the amount of
data encountered so far. SI implies that internal data structures
should require an approximately constant amount of memory,
also independent of the amount of previously processed data.

This paper presents an algorithm designed for incremental
learning of non-stationary data. It complies with the afore-
mentioned features: sequential, online processing, anytime



response and adaptation to changes. Throughout this work
we shall refer to it as Growing Prototype Network Classifier
(GPNC).

The rest of this paper is organized as follows: in Sec-
tion II, we describe relevant contributions to the field, while
in Section III we describe the proposed GPNC algorithm.
Section IV describes the experimental setting, in terms of
datasets to be used and reference algorithms selected for
comparison. In Section V we first present some preliminary
experimentation on GPNC to specify deciding values for some
of its parameters, and then we report experiments on the
defined datasets and compare the results of GPNC with those
of selected IL algorithms proposed elsewhere. Finally, we
summarize the results of this work in Section VI.

II. RELATED WORK

One of the first models that directly addresses many of
the concerns specific to non-stationary learning was Adaptive
Resonance Theory (ART [11]). The authors address a core
issue for non-stationary systems in what they call the stability
versus plasticity dilemma: learners must be able to react to
significant events (plasticity) but not every event has to be
learnt (stability) as that can be proved to lead to unstable
behavior. ART deals with the problem by being able to change
between two different “learning” modes, and autonomously
recognize when the algorithm should change between them.

This key issue is the concern of most of the algorithms that
are specifically designed to deal with adaptation to change
in an incremental way. Underlying representation, however,
may vary, from several types of classification trees to neural
network or support vector approaches.

IB3 [6] is often considered one of the first efforts that uses
the nearest neighbor approach. Incremental learning is based
on an adaptive learning and forgetting mechanism of instances.
IB3 keeps or deletes instances based on the accuracy of the
instance compared to the relative frequency of its class.

In the area of incremental learning of decision trees, the
basic algorithm is called CVFDT [12]. It is a decision tree
classifier that is able to process new data incrementally in
a very fast way, thus making it adequate to learning from
real-time data streams. It is also able to learn from non-
stationary data, using a sliding window of stored patterns
(that is, a time-based instance forgetting mechanism) that is
adjusted dynamically. It also replaces parts of the tree if they
are invalidated by new data. Recent versions of this family of
algorithms can be found in [12]–[15].

Other approaches use neural networks [10], dynamic Gen-
eralized Linear Models [16], a learning Kalman filter frame-
work [17], or Genetic Programming [18].

Closely related to the present work, clustering algorithms
based on an incremental building of data topologies have
been modified to perform incrementally such as in Supervised
Growing Neural Gas (GNG [19]) and adapt to change if change
is slow enough [20]. This clustering methods can be adapted to
classification, like in Incremental Learning Vector Quantization
(ILVQ [21]). Our approach belongs to this family of classifiers.

A field that has increasing interest in non-stationary envi-
ronments is ensemble-based learning. A review of the specific

mechanisms used in this field can be found in [22]; one strong
reason to use ensembles is that the incremental and adaptive
part of the algorithm can be achieved independently of the
nature of the base classifier. This is done by just dividing
data in chunks and later providing those chunks to any base
classifier. However this introduces a dependency on the data
chunk size and has performance drawbacks. Two different
types of algorithms in this area are:

• In Learn++ [23] a dynamic combination of classifiers is used
to deal with non-stationary data. The ensemble combines
classifiers based on the dynamic weights assigned to each
of them depending on the success rate on the current data
set. Several versions of this classifier have been developed
for different purposes [7], [24], [25].
• Algorithms derived from the bagging or boosting batch

learning algorithms, where weighting is associated with
patterns, not classifiers. A review of several versions of
algorithms of this family can be found in [26]. A recent
algorithm that seems able to achieve good accuracy at
the cost of speed is online non-stationary learning using
boosting (ONSBoost [27]).

III. DESCRIPTION OF THE GPNC ALGORITHM

GPNC is an incremental learning algorithm that generates
a network of linked prototypes P , each labeled with one of
the class labels in training data. This set P is available at any
time to classify unlabeled data using the nearest neighbor rule.

Each of the network nodes Pi ∈ {P} is defined by the
following attributes:

• A position xi vector, and a corresponding velocity vector
vi.
• An objective position vector oi.
• The prototype class label ci.
• A fitness value fi that indicates the degree of success in

classification. This value is 0 when a prototype is newly
inserted in P and is adjusted in step 7 of the algorithm.
• A set of non-directed links {Li} with other prototypes,

where the link between prototypes Pi and Pj is labeled
Lij . Each link Lij has an integer age value, aij ≥ 0. For
convenience, the set of prototypes with a link with Pi is
called hereafter N(Pi) (neighbors of Pi).

The algorithm learns in time steps. At each time step it
accepts an input vector (training pattern) T defined by its
position and class {xT, cT }. In this work, time steps will be
indicated as exponent: vt

i
is the velocity vector of prototype

Pi at time step t.

A. Description of the Algorithm

The learning algorithm can be described as follows.

1) Start with an empty {P}
2) Receive a training pattern T = {xT, cT }
3) Find the nearest (Pw) and second nearest (Pz) prototypes
in P , if |P | > 2.

4) Compute the Boolean decision variable GC (Growth
Condition) using Eq. 1. This variable is later used to decide
if the network of prototypes has to grow or adapt.



GC = |P | < 2 ∨

∀Pi ∈ {P}, ci 6= cT ∨

∀i ∈ {w, z}, ‖xPi
− xT‖ > ri (1)

That is, GC is true if either there are less than two
prototypes in P , or there is no prototype in P of class
cT , or distance from T to Pw or Pz is greater than the
corresponding “influence window” value rw and rz . These
values are computed using the algorithm in ILVQ [21] based
on the distance between Pi and its linked neighbors N(Pi):

• rwithin is the average distance to neighbors of the
same class as Pi

• ri is then calculated as the distance to the most
distant neighbor of different class that is closer than
rwithin

• Growth: If IC = true, a new prototype PT (Eq. 2) is
inserted in {P}. Also, this new prototype becomes linked
to Pw and Pz , but only if distance from those prototypes
to PT is less than their corresponding windows rw and
rz (Eq. 3).

{P} ← PT = {xT, cT } (2)

{Li} ← LTi, ∀i ∈ {w, z} | ‖xPi
− xT‖ ≤ ri (3)

• Adaptation: If IC = false, the model is updated. This
phase involves the following steps:

i) Ages of all links from or to Pw are increased by one
unit, and if they reach amax the link is removed:

awi = awi + 1 ∀i Pi ∈ N(Pw)

∀awi ≥ amax remove(Lwi) (4)

ii) If exists, age of the link Lwz is reset to 0; if it does
not exist, the link is created.

awz ← 0, if Lwz ∈ {Lw}

{Lw} ← Lwz, if Lwz /∈ {Lw} (5)

5) The objective vector for Pw is updated using Eq. 6.
Also, objectives for all direct topological neighbors of Pw

(N(Pw)) are updated using Eq. 7.

o
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Objective update equations depend on the parameters α,
β and γ. α and β represent the different influence of T
depending on whether the prototype is Pw or a neighbor of
Pw. This type of adaptation assumes that β < α. That is,
influence of the training pattern decays for neighbors.

Note that for any Pi considered for update, if cT = ci, Pi

shall be attracted toward xT due to the positive sign in the
equation; on the contrary, if cT 6= ci, Pi shall be repelled
from xT. The parameter γ > 0.0 is used to balance the
relative importance of both effects.

6) Simulate the attractive force towards the prototypes’ ob-
jective positions. First Eq. 8 calculates an acceleration
vector that is proportional to the distance to the prototype
objective; then it updates velocity; secondly, Eq. 9 updates
the positions of all the prototypes in P using the calculated
velocity. These equations are simplified versions of move-
ment equations in the PSO algorithm [28]. The parameter
ν ≤ 1.0 acts as a dissipating factor for velocity, and µ
determines if movement will be attenuated or oscillatory
around the objective vector.

v
t+1

i
← ν · vt

i + µ · (oi − x
t

i ) (8)

x
t+1

i
← x

t

i + v
t+1

i
(9)

7) Update fitness of Pw using Eq. 10. If fw is decreased
under the value of a parameter φ, the prototype Pw is
deleted.

f t+1
w ←

{

(1− δ) · f t
w + 1, if cw = cT

(1− δ) · f t
w − 1, if cw 6= cT

(10)

B. Comments on the algorithm

The algorithm implements three different mechanisms in
order to comply to the features we need in incremental learning
from non-stationary data:

• Growth phase adapts the network of prototypes as needed.
The GC criterion adapts P to the presence of data of new
classes. The set of prototypes also grows if a new pattern
is so distant to prototypes in P that it cannot be considered
represented by the current prototypes. That is the role of
the “influence windows” rw and rz . If the new pattern is
outside the region defined by those values, then the pattern
will be inserted as a new prototype.
• Adaptation phase aims to fix an objective position that is a

weighted sum of the new pattern and the previous position.
Prototypes are given velocities as a result of calculating an
acceleration toward the objective position, as a way to be
able to track more efficiently changes in data distributions.
• Forgetting mechanisms are of two types: first, the fitness

based mechanism detects contradiction between new data
and previous data. This mechanism also deletes noisy proto-
types, because their fitness will be quickly reduced under the
deletion threshold. Secondly, the decay factor in fitness (δ)
and ageing of links reduce influence of past data, because
even prototypes that had many good classifications in the
past will be eventually removed if they are not “refreshed”
by new data. They will also be more prone to deletion if
new contradictory data appears.
• Locality. The algorithm is local by design: all adjustments

are based on the local information stored in each prototype,
and propagate only to its directly linked neighbors. This
means that the algorithm shall be able to deal with simul-
taneous data distributions that have different frequencies or
dynamics.



IV. EXPERIMENTAL SETTING

A. Measures of accuracy

Evaluation of performance of non-stationary learning algo-
rithms can be done in several ways that take into account the
nature of the data:

• TestThenTrain (TT) (also known as Prequential error eval-
uation) performs prediction on each pattern before using it
to train the model. It requires no parameters.
• TestThenTrain by blocks (TB) is evaluated as TestThen-

Train but uses a given number of patterns for testing before
using that same block of patterns for training. It requires a
single parameter, block size.
• Training followed by testing on a Holdout set (HT). This

requires setting two parameters: the training and test block
sizes (the number of patterns used for each phase). Then it
performs several blocks of training followed by testing on
the corresponding block of a separate testing dataset. Block
phases need not be of the same size.

Discussion on how prequential error relates to holdout error
can be found in [9], and analysis of prequential statistics is
available in [29]. For the field of classification of data streams
it is unlikely that a separate sample of the distributions may be
available, so TT is usually proposed as the preferred evaluation
method. However, HT evaluation has the advantage that train
and test datasets can be designed with different characteristics.
For instance, it may be decided that train and test datasets have
different levels of noise, or different lengths.

B. Benchmarking Datasets

Some datasets that are commonly used in the literature are
listed in Table II. In order to be able to compare our results
to published data ( [7], [10]) we also provide the evaluation
method used for each dataset. We shall use this same evaluation
method in our experiments. We also list the data block value
used for either test data, train data, or both.

TABLE II. RELATION OF DATASETS FREQUENTLY USED IN

LITERATURE FOR LEARNING FROM NON-STATIONARY DATA

Dataset Size Attributes Classes Evaluation

Artificial Datasets

sea 50000 3 2 HT, block 250

CB (4 sets) 10000 2 2 HT, train block 25, test bl. 1024

Real Datasets

elec2 43512 7 2 TT

weather 18160 8 2 TB, block 30

The SEA Concepts dataset [8] (sea) has a linear boundary
that divides the two classes. At fixed moments in time, the
linear boundary is moved. The training dataset includes some
noise, typically 10% to make the problem more challenging.

The Checkerboard datasets (CBconstant, CBexponential,
CBpulse, CBsinusoidal) were introduced in [7]. Distributions
are spatially located as an XOR-like pattern (“checkerboard”)
and rotate with four types of movement: constant speed,
exponentially increasing speed, sudden change and sinusoidal
speed. Data is sampled only from a small window of the
attribute space. These datasets are periodical, so they may be
used to detect long-term memory in algorithms, that is, ability
to remember previous data.

The Nebraska Weather Prediction dataset (weather)
contains meteorological data from a single station over 50
years. We have used the dataset processed in [7], which
contains only eight features. The two classes mean “rain”
(31%) and “no rain” (69%). This dataset should show yearly
periodicity that might be exploited by algorithms.

The New South Wales Electricity Market Pricing
dataset (elec2) was first proposed in [30] and is also used
in [10], [31]. It contains samples collected at 30-minute
intervals that detail demand in New South Wales, Victoria,
and amount of electricity scheduled to be exchanged between
those Australian states. Prediction is whether the price will
raise or go down. From the initial attributes we removed the
date attribute. As the original dataset had missing attributes
we completed those with the first value found for each of the
missing attributes.

We have not considered in this work other simple artificial
datasets using rotating hyperplanes such as those used in [12].
Other real-world datasets can be found in [16], [17], [32]–
[34] but most of them either are not publicly available or are
not used besides the original work, so we have not considered
them for benchmarking purposes.

C. Algorithms

We are performing analysis of performance of our algo-
rithm using the previously mentioned datasets and comparing
its results to the results of some of the latest algorithms in the
field of NSL. To encompass different tendencies in the field,
we have performed experiments both using single-classifier
approaches and ensemble approaches.

The following single classifier algorithms have been used:

• Adaptive VFDT [15] is a version of VFDT that uses a
change detection mechanism in order to define the length
of a window of relevant recent patterns. For tests we have
used the ADWIN [14] change detector, as it seems to
provide good results. ADWIN detects changes in a series
of patterns; it only uses a confidence bound parameter,
δADWIN . ADWIN is used to adjust a learning window over
training data for any learning algorithm in the following
way: if changes are detected in data, length of the window
is reduced; when change is not present window length is
increased.
• Stochastic Gradient Descent (SGD) techniques have been

proved to be successful options for online classification
of large datasets using SVMs in [35]. The accuracy loss
due to its approximated nature (compared to exact SVM
techniques) is easily balanced when computational cost are
taken into account. The method is incremental as SGD does
not remember which examples where used to adjust the
classifier in previous iterations. SGD update functions are
provided for several classification and regression algorithms,
including Adaline, Perceptron, and linear SVMs. SGD is not
really designed for NSL, but it is able to gradually update a
single surface of separation of the underlying SVM in order
to adapt changes, and retains no knowledge of previous
phases of learning. As such, it adapts well to many slow-
changing datasets even if new data contradicts previous data.
However as it works with a linear SVM, success with this
algorithm depends on separability of the data distribution.



Base algorithms for the ensemble classifiers have been
selected in order to be able to compare a fast but simple
approach with a slower approach more able to represent
complex data. For each of these algorithms we have performed
experiments with the following two different base incremental
classifiers commonly used in the field of learning from data
streams. Note that these algorithms are not designed for non-
stationary learning at all; non-stationarity will be addressed by
the ensemble mechanism.

• Incremental Naive Bayes (INB) incrementally builds a Naive
Bayes classifier that represents data on the assumption
of attribute independence. INB is not designed to adapt
its model to change, but can provide a fast and accurate
representation of stationary data in certain cases.
• VFDT-HoeffdingTree (HOEFT) [5] is an incremental

method that is able to incrementally construct a representa-
tion of data in terms of Hoeffding trees. A Hoeffding tree
is a decision-tree that is able to learn patterns in constant
time (independent of size). We have selected VFDT as base
algorithm because of its ability to classify datasets with
complex representation.

With these methods as base classifiers, experimentation
was performed using the following ensemble-based learning
algorithms.

• DWM [31] is an ensemble method that constructs a set of
classifiers (experts) based on their measured accuracy on
successive blocks of patterns of a fixed size. Each received
pattern is first used to test the ensemble and weight the
experts. Member classifiers weights are adjusted by an
amount β depending on whether they provide correct or
incorrect predictions. After evaluation, incremental learning
is performed for all the experts. Each p patterns a classifier
creation/removal phase decides if a new classifier is inserted,
and classifiers whose accuracy was worse than a parameter
γ are deleted.
• Oza Online Bagging with ADWIN (OBAGA) [26] adds the

ADWIN change detection mechanism to the Online Bagging
method proposed in [36], [37]. In bagging, training data is
resampled to decide the number of copies of each pattern
used to train the base classifiers. Prediction is based on the
unweighted voting of the base classifiers. The authors report
that OBAGA is able to achieve very good results in terms of
accuracy but has a high cost in terms of memory and time
when compared to other algorithms. ADWIN makes Online
Bagging suited to NSL by providing an adaptive window of
training data.
• Oza Online Boosting with ADWIN (OBOOSTA) [26] the

combination of Online Boosting [36], [37] and the ADWIN
change detection method, that plays the same role as in
(OBAGA). Online Boosting is based on allocation and
incremental update of a distribution of weights to patterns,
in such a way that patterns that are misclassified raise their
weights and patterns well classified decrease theirs. These
weights are then used to evaluate each classifier and also
to decide the influence of the vote of each classifier on the
final output of the ensemble.
• Online Non-stationary Boosting (ONSBOOST) [27] is also

based in Oza version of Online Boosting [36], [37] to adapt
the base classifiers weights based on their performance.
It uses a fixed-size window for testing patterns which is

updated on periodical intervals of K patterns. This is done
as part of an ensemble update phase that is executed peri-
odically. In this phase, ONSBoost performs two operations:
it slides the testing window and checks all of the base
classifiers against the testing data. If the ensemble works
better without any of the classifiers, it removes the classifier
and inserts a new one that replaces the former. As a result,
the ensemble size is kept constant, which makes it suitable
for large datasets as memory does not grow with time.

We have used the Massive Online Analysis (MOA [38])
software environment to provide the algorithms and run the
experiments. The following algorithms were used as provided
by that environment. The SGD implementation came from the
WEKA [39] classifiers suite and ONSBoost was implemented
by the authors.

V. EXPERIMENTATION

A. Results of preliminary experimentation on our algorithm

Preliminary experimentation was performed using the sea
dataset as it is widely used in literature. We have not performed
exhaustive optimization of the GPNC parameters but used this
dataset to provide the sample values found in Table III. These
values were then used for evaluation of all other datasets.

TABLE III. GPNC PARAMETERS

Description Value

amax Maximum link age 20

α Objective update for closest prototype 1

β Objective update for neighbors 0.25

γ Factor for repulsion 0.05

ν Inertia coefficient 0.2

µ Memory coefficient 0.025

δ Fitness decay factor 0.01

φ Deletion threshold for fitness 0.1

A separate analysis was performed to decide the effect
of the decay factor for fitness δ, as this mechanism has an
important effect on the algorithm behavior. Resulting models
P generated by each experiment of the algorithm will have
different number of prototypes; this number is both a measure
of space requirements and time performance of the algorithms,
as classification involves calculating distances to all the pro-
totypes.

Results for the experiments on the sea dataset are summa-
rized in Table IV.

It is clear that as the number of prototypes increases,
so does accuracy; however more prototypes also means a
significant increase in processing time.

In Figure 1 we represent the evolution of the number of
prototypes in P during processing of this dataset for three

TABLE IV. RESULTS FOR THE DATASET sea FOR DIFFERENT VALUES

OF δ. ACCURACY SHOWS CLASSIFICATION SUCCESS RATE IN % USING THE

HOLDOUT SET (HT) PERFORMANCE MEASURE

δ = 0.0 δ = 0.001 δ = 0.01 δ = 0.025

# prototypes 1507 360 35 7

Accuracy (%) 88.42 88.77 86.16 84.06

Execution time (s) 962.98 267.86 19.56 10.40
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Fig. 1. Evolution of the number of prototypes for the sea dataset with different
values of the δ parameter: 1.0, 0.025, 0.01, 0.001.

different values of the δ parameter, including a base version
where fitness does not age.

It is clear that the algorithm requires setting this parameter
in order to comply with the time or space invariance con-
straints (TI and SI). With δ = 0.0, the number of prototypes
increases linearly with the number of patterns being processed.
Conversely, it reaches an stable value for the rest of the
configurations. Obviously the value for this parameter might
be optimized for each problem; however, in this work we have
selected a value of δ = 0.01 for all the experiments, as the
number of prototypes stabilizes quite early.

B. Results on the datasets provided in literature

Table V presents the results of experiments on each of the
datasets.

An issue that was quickly raised was that SGD was greatly
influenced by the way evaluation was performed. It seems that
the algorithm is not able to perform adequately on separate
blocks of train and test data, but it performs much better when
we use TT evaluation such as in the elec2 dataset. Using TT
evaluation with SGD reported results of 81.65% in sea and
67.88% in weather. Its results did not change significantly in
the rest of the datasets. This effect was also present to a lower
extent when using the DWM classifier.

Independent execution of the base algorithms was useful
to provide some additional information to explain results on
these datasets. For instance, dataset sea can be classified very
accurately by single INB (92.38%) or HOEFT (93.20%) classi-
fiers. This means that effect of non-stationary data is probably
averaged over the whole dataset in this form of evaluation, as
in SEA changes occur abruptly at certain moments of time.
That is, measure of the total error is not the best measure for
datasets when they are stationary during most of the testing
period.

In the sea dataset, results of all versions of GPNC achieve
worse performance than the rest of the algorithms (except
SGD). This may be a weakness of our algorithm that has to be
studied. As GPNC is based on a Nearest Neighbor approach, it
may be misled by the fact that training data in this dataset has

a significant degree of added noise, which may be affecting
results. It is also clear that in this dataset reducing the number
of prototypes is detrimental to accuracy.

In the CB datasets, reference algorithms have a low ac-
curacy because of the limited representation ability of the
base classifiers themselves, as data is organized in a XOR-
pattern. The HoeffdingTree representation is clearly better,
but not enough as AHOEFT only achieves between 54.6%
and 61.28% success in these datasets. Boosting ensembles
are able to increase success between 65% and 75%. However
GPNC clearly provides the best results. It seems that GPNC
can represent the XOR-like moving distribution of data more
accurately. In these datasets, increasing δ helps the algorithm
to achieve good results.

In the weather dataset, GPNC has results comparable to the
rest of the algorithms ranging between 72.37% for δ = 0.01 to
74.82% for δ = 0). The accuracy/performance trade-off is of
the same type as in sea dataset. OBAGA and ONSBOOSTA

perform slightly better (74− 75%) on this dataset.

In dataset elec2, some of the reference algorithms clearly
outperform the rest: SGD, ONSBOOST and DWM, with
HoeffdingTree base classifier. The reason may be that, in this
dataset classification has a strong dependency on very recent
history of patterns. That is, this dataset can be classified more
accurately if only the most recent patterns are retained and
used for classification. This is supported by the fact that GPNC
achieves better results with δ = 0.01, performing almost
as well as the former algorithms. Retaining past knowledge
in this case seems to be detrimental for accuracy. OBAGA

and OBOOSTA have an intermediate result when using the
HoeffdingTree representation. The fact that SGD is the best
classifier means that data is separable by a single linear
boundary.

The lower part of Table V shows execution time for each
of the algorithms. It is clear that using a Hoeffding tree base
classifier has also a major impact in the ensemble methods over
the simpler INB. It is also clear that the better performance
of ONSBOOST in terms of accuracy is balanced by a much
greater cost in terms of time over the OBOOSTA algorithm.
ONSBOOST is clearly the slowest of the ensemble algorithms
except in very specific cases, and DWM is the fastest of the
ensemble algorithms.

Comparing GPNC times with times of the reference al-
gorithm, when δ = 0.01 it has a reasonable execution time;
version with δ = 0 however has a much increased com-
putational cost, comparable to the ensemble classifiers with
HoeffdingTree base classifier.

VI. CONCLUSIONS

Incremental learning on non-stationary data is becoming
an increasing subject of study. Many algorithms have been
developed to deal with different aspects of learning in such
environments. Our definition of a proper algorithm for non-
stationary learning (NSL) includes several aspects: Sequen-
tial Processing, Online Processing, Any-Time Response, and
Adapts to Change. Also, in many applications both space and
time invariance constraints become mandatory, in the sense
that algorithms should have stable time/size performance over
the learning process.



TABLE V. ACCURACY AND EXECUTION TIME OF COMPARED CLASSIFIERS OVER THE SEVEN DATASETS. THE FIRST SET OF EXPERIMENTS ON THE

ENSEMBLE ALGORITHMS USES A NAIVE BAYES BASE CLASSIFIER, THE SECOND SET USES A HOEFFDINGTREE CLASSIFIER. THE “BASE” COLUMN SHOWS

THE RESULTS OF A SINGLE CLASSIFIER OF THE RELEVANT TYPE. ∗ : 81.65% WITH TT EVALUATION. † : 67.88% WITH TT EVALUATION.

GPNC Non-ensemble Ensemble with Naive Bayes Ensemble with HoeffdingTree

Dataset δ = 0 δ = 0.01 SGD AHOEFT Base (NB) DWM OBAGA OBOOSTA ONSBOOST Base (HOEFT) DWM OBAGA OBOOSTA ONSBOOST

A
cc

u
ra

cy
(%

)

sea 88.42 86.16 35.83∗ 96.19 92.38 90.57 95.87 92.64 92.24 93.20 88.57 95.79 92.42 93.34

CBconstant 68.41 82.08 53.97 54.60 51.38 57.14 57.66 54.45 56.22 54.29 57.11 56.04 67.25 70.97

CBexponential 72.78 82.68 52.48 56.36 52.22 57.76 56.93 58.05 58.68 56.48 60.05 59.72 66.82 69.46

CBpulse 76.16 83.54 53.43 59.57 46.68 53.81 51.34 52.60 54.56 60.83 54.22 56.86 72.59 72.05

CBsinusoidal 74.10 83.38 52.38 61.28 45.52 55.24 50.67 54.41 58.88 62.32 55.30 56.78 72.49 75.74

weather 74.82 72.37 32.58† 74.06 69.24 69.65 72.76 73.91 73.84 73.12 69.70 75.58 74.18 75.83

elec2 78.57 87.42 90.86 82.07 73.26 82.70 78.29 77.58 66.44 78.36 86.50 82.59 83.68 89.02

E
x
ec

u
ti

o
n

ti
m

e
(s

)

sea 962.98 19.56 2.21 3.48 1.18 2.50 6.56 6.01 112.77 4.75 4.44 20.79 263.36 129.26

CBconstant 67.63 11.17 4.04 5.31 3.45 6.55 11.48 7.15 547.80 7.52 7.38 17.04 62.84 503.75

CBexponential 48.08 13.33 4.19 5.77 3.57 6.61 11.55 7.29 467.03 7.31 7.58 18.03 46.54 515.72

CBpulse 47.11 11.59 4.15 4.54 3.50 6.51 11.53 6.99 454.02 7.16 7.29 16.54 64.92 507.30

CBsinusoidal 68.84 11.86 4.20 4.91 3.48 6.57 11.59 8.69 446.58 8.00 7.36 17.03 53.81 487.45

weather 178.64 12.01 2.54 6.70 1.61 3.05 11.47 10.81 47.01 7.32 5.36 44.47 357.45 154.41

elec2 947.88 19.46 1.87 7.60 2.46 5.10 17.91 16.06 103.69 25.49 10.43 59.89 964.23 1546.09

We propose GPNC, a Nearest Prototype classifier that
incrementally constructs a network of labeled prototypes that
represent the topology of the data. This network is able to
grow and evolve depending on the new information received
as training data. The algorithm is able to incrementally add
new classes and follow data even if the data generation process
is non-stationary. Adaptation of the network is also achieved
by moving the prototypes when new data appears in their
proximity.

Also, a fitness based mechanism is introduced to be able
to deal with contradiction in data. In a non-stationary envi-
ronment with sudden changes, new data may be of different
class than the prototypes in its area of the attribute space. A
fitness value that represents performance is updated for each
prototype, increasing when it performs good classifications,
and decreasing when it contradicts data. When fitness drops
under a certain level, the prototype is deleted.

To meet time and space invariance constraints, the size of
the prototype set must not grow in an uncontrolled way as
more data becomes available for training. This is achieved by
adding a time-based forgetting mechanism, not to patterns, but
to prototypes’ performance. For each prototype, fitness decays
with age, so old prototypes become more likely to be deleted.

We have tested our algorithm in several datasets used in
the literature. Our results show that it performs better than
most state of the art algorithms when dataset has a complex
representation. When it does not, its performance in terms
of accuracy is usually worse than the best ensemble-based
algorithms. However, its computational cost is significantly
better than those of most of the ensemble algorithms.

Further work is required to provide self-adaptation of the
parameters of the algorithm. We have found that the trade-off
between accuracy and performance depends strongly on the δ
parameter we use for time-based forgetting.

As a general consideration, we have detected that the evalu-
ation procedure may have an impact on the measured accuracy
(such as with SGD). Also datasets are usually tested with a
specific value for the chunk size parameter, that is important to
the ensemble approach. But this parameter has to be estimated
when dealing with unknown data. It is also unclear to what
extent datasets in literature contain a significant amount of
non-stationary data, as parts of the datasets may be invariant.

Further work on categorizing or generating benchmarks that
measure different features of NSL algorithms would be of great
interest to the field.
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