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1 Introduction and Related Work

The study of distances between data sets lies at the very core of many methods of cluster analysis,

where we have to choose a distance for merging ongoing clusters [47]. Metrics for data sets can

be useful in shape recognition and image classification [36, 39, 20], in genetics [1], time series [32]

or geometric inference [9], where the Hausdorff distance is a common choice.

1



However, the Hausdorff distance is designed for dealing with geometric objects, and there are

other settings where it is convenient to take into account the underlying statistical distribution to

calculate distances between data sets; a classical example is Mahalanobis distance for data sets

arising from normal multivariate distributions. Our purpose in this paper is to design a distance

between data sets that takes into account the underlying data distribution.

To this aim we will focus on the study of distances between probability measures (PM), also

known as distributions. Classical examples of application of distances between PMs in Statistics

are homogeneity tests, independence tests and goodness of fit test problems, where the goal is to

decide if some available data samples come from the same population or not. These problems can

be solved by choosing an appropriate distance between PM. Examples are the Pearsons’s goodness

of fit test based on the use of the χ2 distance, and the Kolmogorov-Smirnoff statistics, that uses

the L1 distance between the empirical and theoretical distribution functions. Other examples of

distances between PM can also be founded in Clustering [5], Image Analysis [13], Time Series

Analysis [25], Econometrics [24, 44] and Text Mining [21], just to name a few.

Next we summarize the most important families of distances between PM. For an exhaustive review

of distances between probability distributions and theoretical results, see for instance [12, 48, 26],

and references therein.

One of the largest family of dissimilarities between probability distributions is the f -divergences

class [11]. Consider two probability densities, say P and Q, defined on a measurable space

(X,F , µ), where X is a sample space, F a σ-algebra of measurable subsets of X and µ : F → IR+

the ambient σ-additive measure. For a convex function f and assuming that P is absolutely

continuous with respect to Q, then the f -divergence from P to Q is defined by:

df (P,Q) =
Z
X

f

�
dP
dQ

�
dQ. (1)

Some well known particular cases: for f(t) = |t−1|
2

we obtain the Total Variation metric; f(t) =
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(t− 1)2 yields the χ2-distance; f(t) = (
√
t− 1)2 yields the Hellinger distance.

The second important family of dissimilarities between probability distributions is made up of

Bregman Divergences: Consider a continuously-differentiable real-valued and strictly convex func-

tion ϕ and define:

dϕ(P,Q) =
Z
X

(ϕ(fP)− ϕ(fQ)− (fP − fQ)ϕ′(fQ)) dµ(x), (2)

where fP and fQ represent the density functions for P and Q respectively and ϕ′(fQ) is the deriva-

tive of ϕ evaluated at fQ (see [15, 10] for further details). Some examples of Bregman divergences:

ϕ(t) = t2 yields the Euclidean distance between fP and fQ (in L2); ϕ(t) = t log(t) yields the

Kullback Leibler (KL) Divergence; and for ϕ(t) = − log(t) we obtain the Itakura-Saito distance.

In general df and dϕ are not metrics because the lack of symmetry and because they do not

necessarily satisfy the triangle inequality.

A third interesting family of PM distances are integral probability metrics (IPM) [48, 26]. Consider

a class of real-valued bounded measurable functions on X, say H, and define the IPM between P

and Q as

dH(P,Q) = sup
f∈H

����Z fdP−
Z
fdQ

���� . (3)

If we choose H = {h : ‖h‖∞ ≤ 1} then dH is the Total Variation distance; when H = {1[(−∞,x)] :

x ∈ Rd}, dH is the Kolmogorov distance; if H = {e
√
−1〈ω,.〉 : ω ∈ Rd} the metric computes the

maximum difference between characteristics functions. In [40] the authors propose to choose H

as a Reproducing Kernel Hilbert Space and study conditions on H to obtain proper metrics dH.

However, there is a serious problem to implement the above described distance functions: in

real life we do not know the density functions corresponding to the samples under consideration.

For instance suppose we want to estimate the KL divergence (a particular case of (1) taking

f(t) = − log t) between two continuous distributions P and Q from two given samples. In order
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to do this we must choose a number of regions, N , and then estimate the density functions for P

and Q in the N regions to yield the following estimation:

ÔKL(P,Q) =
NX
i=1

p̂i log
p̂i
q̂i
, (4)

where {p̂i, q̂i}Ni=1 denotes the estimated density in each region of P and Q, respectively. It is well

known the difficulty in estimating density functions, especially in high dimensional settings.

Non parametric estimators often play a role in estimating such distances. In practical situations

there is usually available a not huge data sample, and the use of purely non parametric estimators

often results in poor performance [18]. It is also well known that the non-parametric estimations

suffers from the “curse of dimensionality”: the estimation of general distribution functions becomes

intractable as dimension arises. Another important drawback in non-parametric density estimation

is the high computation time and huge storage required. This motivates the need of seeking metrics

for probability distributions that do not explicitly rely on the estimation of the corresponding

probability/distribution functions.

An appealing point of view, initiated by Fisher and Rao [7, 2, 4] and continued with recent

development of Functional Data Analysis and Information Geometry Methods [35, 3, 34, 40], is to

consider probability distributions as points belonging to some manifold, and then take advantage

of the manifold structure to derive appropriate metrics for distributions. This point of view is

used, for instance, in the field of Image Analysis [33, 13].

In this work we elaborate on the idea of considering a kernel function for data points with reference

to a distribution function, that will be extended to a kernel (and to a distance) for data sets. The

article is organized as follows: In Section 2 we introduce kernel functions for data sets with uniform

distributions. Section 3 introduces a new metric for general data sets based on the estimation of

density level sets. Section 4 shows the performance of the proposed metric on both, simulated and

real data sets. Section 5 concludes and shows the next steps for short term future work.
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2 A kernel for data sets with reference to a distribution

Consider a measure space (X,F , µ), where X is the sample space (a compact set of a real vector

space in this work), F a σ-algebra of measurable subsets of X and µ : F → IR+ the ambient σ-finite

measure. A probability measure (PM) P is a σ-additive finite measure absolutely continuous

w.r.t. µ that satisfies the three Kolmogorov axioms. By Radon-Nikodym theorem, there exists a

measurable function fP : X → IR+ (the density function) such that P (A) =
R
A fPdµ, and fP = dP

dµ

is the Radon-Nikodym derivative.

From now on we focus on data sets generated from (unknown) PM and we will only mention the

corresponding distributional distance measures in Section 3.

It is possible to define distances between data sets using the RKHS representation. The authors

in [34, 40] define the induced kernel distance for the sets of points A = {xi}ni=1 ∈ X and B =

{yj}mj=1 ∈ X, by:

D2
K(A,B) =

X
x∈A

X
x′∈A

K(x, x′) +
X
y∈B

X
y′∈B

K(y, y′)

| {z }
self similarity

− 2
X
x∈A

X
y∈B

K(x, y).| {z }
cross similarity

, (5)

where the kernel measures the similarity between the sets A and B. We will work on the con-

struction of a kernel family of functions for data sets (later extended to PM) to embed the data

sets into the RKHS structure. This allows us to define a distance measure for data sets, using the

natural metric defined in Equation 5. The metrization obtained via the kernel embedding allows

us to represent the data sets by points in a finite dimensional vector space, procedure that situates

the problem at hand in the context of Functional Data Analysis.

Usually the available data are given as a finite sample. We will consider two iid samples A =

sn(P) = {xi}ni=1 ∈ P (X), where P (X) denotes the power set of X, and B = sm(Q) = {yj}mj=1 ∈

P (X), generated from the density functions fP and fQ, respectively and defined on the same
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measure space. Define rA = min d(xl, xs), where xl, xs ∈ A. Then rA gives the minimum resolution

for data set A: If a point z ∈ X is located at a distance smaller than rA from a point x ∈ A then,

taken P as reference measure, it is impossible to differentiate z from x. That is, it is not possible

to reject the null hypothesis that z is generated from P, given that z is closer to x than any other

point from the same distribution. This suggests the following definition:

Definition 1. Indistinguishability with respect to a distribution. Let x ∈ A, where A

denotes a set of points generated from the probability measure P, and y ∈ X. We say that y

is indistinguishable from x whit respect to the measure P in the set A when d(x, y) ≤ rA =

min d(xl, xs), where xl, xs ∈ A. We will denote this relationship as: y
A(P)
= x.

Given the sets A = sn(P) and B = sm(Q), we want to build kernel functions K : X ×X → [0, 1],

such that K(x, y) = 1 when y
A(P)
= x or x

B(Q)
= y, and K(x, y) = 0 if y

A(P)

6= x and x
B(Q)

6= y. For this

purpose we can consider smooth indicator functions, for example:

Definition 2. Smooth indicator functions. Let r > 0 and γ > 0, define a family of smooth

indicator functions with center in x as:

fx,r,γ(y) =

8><>:
e
− 1

(‖x−y‖γ−rγ )2
+ 1

r2γ if ‖x− y‖ ≤ r

0 otherwise.
(6)

We represent in Fig. 1 the indicator function in dimensions 1 and 2, with parameters γ = 2 and

r = 1. The smooth function fx,r,γ(y) act as a bump function with center in the coordinate point

given by x: fx,r,γ(y) ≈ 1 for y ∈ Br(x), and fx,r,γ(y) decays to zero out of Br(x), according to a

rate that depends upon the shape parameter γ.
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1D indicator function 2D indicator function

Figure 1: Smooth indicator functions. (a) 1D case. (b) 2D case.

It is clear from the Definition 2 that: lim
r→0

fx,r,γ(y) = 〈fx,r,γ(y), δx()〉 = δx(y) = δ(y − x), where

δ() is the Dirac-Delta generalized function; for further details on Generalized Functions refers to

[42]. This result is important in order to give an asymptotic interpretation to the proposed metric.

We are now ready to define an indicator kernel function that summarizes the distinguishability

relationship between two points.

Figure 2: Illustration of the
A(P)
= and

B(Q)
= relationship using smooth indicator functions.
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Definition 3. Distributional indicator kernel. Given A = sn(P) and B = sm(Q), define

KA,B : X ×X → [0, 1] by:

KA,B(x, y) = fx,rA,γ(y) + fy,rB ,γ(x)− fx,rA,γ(y)fy,rB ,γ(x), (7)

where rA = min d(xl, xs), with xl, xs ∈ A, rB = min d(yl, ys), with yl, ys ∈ B and γ it is a shape

parameter. Now, if d(x, y) > rA and d(x, y) > rB (see Fig. 2A) then KA,B(x, y) = 0: x ∈ A\B

w.r.t. Q and y ∈ B\A w.r.t. P. If d(x, y) > rA but d(x, y) < rB, then y ∈ B\A w.r.t. P, but

x
B(Q)
= y at radius rB and KA,B(x, y) = 1 (Fig. 2B). If d(x, y) < rA but d(x, y) > rB, then x ∈ A\B

w.r.t. Q, but y
A(P)
= x at radius rA and KA,B(x, y) = 1. Finally, if d(x, y) < rA and d(x, y) < rB,

then KA,B(x, y) = 1 and y
A(P)
= x at radius rA and x

B(Q)
= y at radius rB (Fig. 2C).

Definition 4. Kernel for data sets. Given A = sn(P) and B = sm(Q), we consider kernels

K : P (X)×P (X)→ [0, 1], where P (X) denotes the power set of X, and for C and D in P (X),

define:

K(C,D) =
X
x∈C

X
y∈D

KA,B(x, y). (8)

When C = A and D = B, we can interpret K(A,B) as a measure for A∩B by counting, using as

equality operators
A(P)
= and

B(Q)
= , the points ‘in common’: µKA,B(A∩B) = K(A,B). The expression

in Equation 8 is directly related with the works in [34, 40]. We next give an explicit kernel function

to measure the cross-similarity between the sets A and B, as in Equation 5, based on the idea of

“indistinguishability” (see Definition 1). Given the identity A∪B =

A∆Bz }| {
(A−B) ∪ (B − A) ∪(A∩B),

we will define µKA,B(A ∪ B) = N , where N = n + m = #(A ∪ B), is the counting measure of

the set A ∪ B. Therefore µKA,B(A∆B) = N − µKA,B(A ∩ B), and we can take this expression

(dividing by N) as a definition for the distance between the sets A and B. Another way to derive
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an equivalent distance, is using the expression of Equation 5:

D2
K(A,B) = K(A,A) +K(B,B)− 2K(A,B),

= n+m− 2K(A,B),

= N − 2
X
x∈A

X
y∈B

KA,B(x, y). (9)

Note that this kernel distance is defined in terms of it square. We will present a slightly different

distance in Definition 5.

It is straight to check that when the size of the sets A and B increases, then the respective radius

tends to: rA
n→∞→ 0 and rB

m→∞→ 0. By Definition 2, the smooth indicator functions tends to the

Dirac-Delta Generalized function, therefore K(A,B)
n,m→∞→ µ(A ∩ B). In this sense, the Kernel

for data sets defined in Equation 8 is an unbiased estimator of the measure that correspond to the

intersection between the sets A and B: µ(A ∩B).

In the general case, K(C,D) can be interpreted as a measure for C ∩ D by counting, using as

equality operators
A(P)
= and

B(Q)
= , the points ‘in common’: µKA,B(C ∩ D) = K(C,D). Therefore

the respective distance between C and D obtained with the use of K(C,D), is conditioned to a

“resolution” level determined by the sets A and B (this is rA and rB).

Definition 5. Distance between data sets. Given A = sn(P) and B = sm(Q), we define the

kernels distance for C and D in P (X):

dK(C,D) = 1− K(C,D)

N
, (10)

where N = nC + nD = #(C ∪ D) and represent the measure of the set C ∪ D. It is straight to

check that dK(C,D) is a semimetric (using the equality operators y
A(P)
= x or y

B(Q)
= x where it

corresponds).
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When C = A and D = B and size of both sets increases, then: µKA,B(A ∩ B)
n,m→∞→ µ(A ∩ B)

and µKA,B(A ∪ B)
n,m→∞→ µ(A ∪ B), therefore limn,m→∞ dK(A,B) = 1− µ(A∩B)

µ(A∪B)
. We can interpret

the limit of the proposed distance as a Jaccard distance for data sets. This last expression is

clearly related with the distance defined in Equations 5 and 9, because as K(A,A)
n→∞→ µ(A) and

K(B,B)
m→∞→ µ(B), then limn,m→∞D

2
K(A,B) = µ(A) + µ(B)− 2µ(A ∩B); therefore:

lim
n,m→∞

dK(A,B) = lim
n,m→∞

D2
K(A,B)

µKA,B(A ∪B)

We want to exemplify how the proposed metric works with a synthetic example. We generate

two iid samples s500(P) = A and s500(Q) = B, drawn from the bi-dimensional uniform density

function inside a ball, with center in zero and radius r = 1 (fP = U2 (µ = (0, 0), r = 1)), and

the bi-dimensional Normal distribution function, with parameters µ = (0, 0) and Σ = I2 (fQ =

N2 (µ = (0, 0),Σ = I2)). We generate new sets: A′ and B′, by displacing all the points in the sets

A and B a constant distance in the same direction. In Figure 3 we represent the sets A, A′, B

and B′.
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A B

A’ B’

(a) (b)

(c) (d)

A A

B’ B

Figure 3: (a) A and A′, (b) B and B′, (c) A and B′, (d) A and B

Therefore using Definition 5, the distance between sets B and B′ should be larger compared with

the distance between the sets A and A′, because as the intersection between the last two sets

seems to be bigger, the sets A and A′ are more “similar” in relation with the sets B and B′. To

verify the similarity relations between the sets, we compute the distance matrix in Table 1:

Table 1: Matrix of distances between data sets: A, A′, B and B′.

A A′ B B′

A 0 0.792 0.104 0.821

A′ 0 0.823 0.104

B 0 0.864

B′ 0
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According to Table 1:

dK(B,B′) ≥ dK(A,B′) ≈ dK(A′, B) ≥ dK(A,A′) ≥ dK(A,B) ≈ dK(A′, B′),

that agrees with the visual inspection of Figure 3. For instance: dK(B,B′) = .864 ≥ dK(A,A′) =

.792.

3 A metric for data sets based on the estimation of level

sets

In a general distribution, distances between sample points vary depending on the generating PM.

Hence, using constant radii to determine the “distinguishability” relationship between points is

only adequate if we are working with the uniform PM. In this section we propose a solution to

this problem by splitting each data set in density level sets, and then considering difference sets

between consecutive density levels, for which density is approximately constant.

Definition 6. α-level sets: Given a PM P with density function fP, α-level sets or minimum

volume sets, are defined by Sα(fP) = {x ∈ X| fP(x) ≥ α}, such that P (Sα(fP)) = 1 − ν , where

fP is the density function and 0 < ν < 1. If we consider an ordered sequence α1 < . . . < αk,

αi ∈ (0, 1), then Sαi+1
(fP) ⊆ Sαi(fP).

Let us define Ai(P) = Sαi(fP) − Sαi+1
(fP), i ∈ {1, . . . , k − 1}. We can choose α1 ' 0 and

αk ≥ maxx∈X fP(x) (which exists, given that X is compact and fP continuous); then
S
iAi(P) '

Supp(P) = {x ∈ X| fP(x) 6= 0} (equality takes place when k → ∞, α1 → 0 and αk → 1 ). Note

that given the definition of the Ai, if Ai(P) = Bi(Q) for every i when k →∞, then P = Q.

Given the definition of the Ai-level set, both P and Q are approximately constant on Ai and Bi

level sets, respectively. Therefore the use of a constant radii is again adequate when we compare

the distance between the sets Ai and Bi.
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3.1 Estimation of level sets

To estimate level sets from a data sample we present the following definitions and theorems,

adapted from [29, 30, 27, 28].

Definition 7. Neighbourhood Measures. Consider a random variable X with density function

f(x) defined on IRd. Let Sn denote the set of random independent identically distributed (iid)

samples of size n (drawn from f). The elements of Sn take the form sn = (x1, · · · , xn), where

xi ∈ IRd. Let M : IRd × Sn −→ IR be a real-valued function defined for all n ∈ IN. (a) If

f(x) < f(y) implies lim
n→∞

P (M(x, sn) > M(y, sn)) = 1, then M is a sparsity measure. (b) If

f(x) < f(y) implies lim
n→∞

P (M(x, sn) < M(y, sn)) = 1, then M is a concentration measure.

Example. Consider the distance from a point x to its kth-nearest neighbour in sn, x(k): M(x, sn) =

dk(x, sn) = d(x, x(k)): it is a sparsity measure.

The Support Neighbour Machine [29] solves the following optimization problem:

max
ρ,ξ

νnρ−
nX
i=1

ξi

s.t. g(xi) ≥ ρ− ξi ,

ξi ≥ 0, i = 1, . . . , n ,

(11)

where g(x) = M(x, sn) is a sparsity measure. We present now a theorem taken from [29, 30]:

Theorem 1. The set Rn = {x : hn(x) = sign(ρ∗n − gn(x)) ≥ 0} converges to a region of the

form Sα(f) = {x|f(x) ≥ α}, such that P (Sα(f)) = ν. Therefore, the Support Neighbour Machine

estimates a density contour cluster Sα(f) (around the mode).

Hence, we take Âi(P) = Ŝαi+1
(fP)− Ŝαi(fP), where Ŝαi(fP) is estimated by Rn defined above.

Definition 8. Weighted level-set distance. Consider data sets A = sn(P) and B = sm(Q),

generated from PMs P and Q, respectively. Choose a partition α1 < α2 < . . . < αk, αi ∈ (0, 1)

13



and denote by Âi(P) = Ŝαi+1
(fP)− Ŝαi(fP) the estimation of Ai = Sαi+1

(fP)−Sαi(fP) based on set

A; and define similarly, B̂i(Q). Then we define the weighted α-level set distances between the sets

A and B by

d(A,B) =
k−1X
i=1

widK(Ai, Bi), (12)

where w1, . . . , wk−1 ∈ R+. Thus

dK(A,B) =
k−1X
i=1

wi

�
1− K(Ai, Bi)

#(Ai ∪Bi)

�
=

k−1X
i=1

wi

 
1−

µKA,B(Ai ∩Bi)

µKA,B(Ai ∪Bi)

!
,

where µKA,B is the ambient measure. Equation (12) can be interpreted as a weighted sum of

Jaccard distances between the Ai(P) and Bi(Q) sets. In the subsection 3.2, we will propose

several schemes for setting the weights {wi}k−1
i=1 .

Now we can define a distance between probability distributions P and Q:

Definition 9. Distance for probability distributions. Given two PMs P and Q, and samples

A = sn(P), B = sm(Q), we define:

d(P,Q) = lim
(n,m,k)→∞

k−1X
i=1

widK(Ai, Bi), (13)

where dK is given in Definition 5 and Ai(P) and Bi(Q) for i = 1, .., k− 1, are the partitions of the

sets A and B. In practice, we will use dK(A,B) to estimate the distance between P and Q.

3.2 Choice of weights for α-level set distances

Now is the time to fix some weighting schemes for the distances defined by eq. (12). Denote by sP

and sQ the data samples corresponding to set of points/PMs A(P) and B(Q) respectively, and de-

note by sÂi(P) and sB̂i(Q) the data samples that estimateAi(P) andBi(Q), respectively. We estimate

the geometric structure of these sets using the following coverings: Âi(P) = ∪x∈sÂi(P)B(x, rÂi(P)),

and B̂i(Q) = ∪y∈sB̂i(Q)
B(y, rB̂i(Q)), as you can see in Figure 4.
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Figure 4: (a) Data samples sA (dense) and sB (empty), in this case uniformly distributed. (b)

Covering Â. (c) Covering B̂.

Let k denote the number of levels in partition α = {α(i)}k1. Denote by nÂi(P) the number of data

points in sÂi(P), nB̂i(Q) the number of data points in sB̂i(Q), rÂi(P) the (fixed) radius for the covering

Âi(P) and rB̂i(Q) the (fixed) radius for the covering B̂i(Q). We define the following three weighting

schemas (see more details in [27, 28]):

Weighting Scheme 1 : Choose wi in (12) by:

wi =
1

k

nÂi(P)X
x∈sÂi(P)

nB̂i(Q)X
y∈sB̂i(Q)

�
1− IrÂi(P),rB̂i(Q)

(x, y)
� ‖ x− y ‖2

(sB̂i(Q) − Âi(P)) ∪ (sÂi(P) − B̂i(Q))
. (14)

Weighting Scheme 2 : Choose wi in (12) by:

wi =
1

k
max

x∈sÂi(P),y∈sB̂i(Q)

n
(1− IrÂi(P),rB̂i(Q)

(x, y)) ‖ x− y ‖2

o
. (15)

Weighting Scheme 3 : Choose wi in (12) by:

wi =
1

k
Ĥ
�
sB̂i(Q) − Âi(P), sÂi(P) − B̂i(Q)

�
, (16)
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(a) Weighting Scheme 1 (b) Weighting Scheme 2 (c) Weighting Scheme 3 

x

1y
2y

Figure 5: Calculation of weights in the distance defined by equation (12).

where IrA,rB(x, y) = 1 when y belongs to the covering Â, x belongs to the covering B̂ or both

events happen. Ĥ(X̂, Ŷ ) denotes the Hausdorff distance (finite size version) between finite

sets X̂ and Ŷ (which estimates the ‘theoretical’ Hausdorff distance between space regions X

and Y ). In this case X = Ai(P)−Bi(Q) and Y = Bi(Q)− Ai(P).

The intuition behind the three weighting schemes is illustrated in Figure 5. In weighting scheme

1 the weight wi is a weighted average of distances between a point of sÂi(P) and a point of sB̂i(Q)

where ‖x− y‖2 is taken into account only when IrÂi(P),rB̂i(Q)
(x, y) = 0. To illustrate this, consider

x ∈ sÂi(P) and y1, y2 ∈ sB̂i(Q) (Figure 5 (a)). The quantity ‖x − y1‖2 does not contribute to

calculation of the weight wi because y1 belongs to the (red) covering ball centered at x. That is,

y1 belongs to the cover estimation of Ai(P) and therefore should not be taken into account for

the calculation of the distance. On the other hand, ‖x − y2‖2 contributes to the calculation of

the weight wi because y2 does not belong to the (red) covering ball centered at x. In weighting

scheme 2 wi is proportional to the maximum distance between a point belonging to Âi(P) and a

point belonging to B̂i(Q), given that the covering balls centered at such points do not overlap.

Figure 5 (c) illustrates the Hausdorff distance between the sets sB̂i(Q) − Âi(P) and sÂi(P) − B̂i(Q).
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4 Experimental Work

Being the proposed distances intrinsically nonparametric, there are no simple parameters on which

we can concentrate our attention to do exhaustive benchmarking. The strategy will be to compare

the proposed distances to other classical PM distances for some well known (and parametrized)

distributions and for real data problems. Here we consider distances belonging to the main types

of PMs metrics: Kullback-Leibler (KL) divergence [6, 31] (f -divergence and also Bregman diver-

gence), t-test (T) measure (Hotelling test in the multivariate case) and Energy distance [43, 38].

For further details on the sample versions of the above distance functions and their computational

subtleties see [37, 8, 45, 31, 41, 17, 43] and references therein.

4.1 Artificial data

4.1.1 Discrimination between normal distributed sets of points

In this experiment we quantify the ability of the considered set/PM distances to discriminate

between multivariate normal distributed sets of points. To this end, we generate a data sample of

size 100d from a N(0, Id) where d stands for dimension and then we generate 1000 iid data samples

of size 100d from the same N(0, Id) distribution. Next we calculate the distances between each of

these 1000 iid data samples and the first data sample to obtain the 95% distance percentile.

Now define δ = δ1 = δ(1, . . . , 1) ∈ Rd and increase δ by small amounts (starting from 0). For each

δ we generate a data sample of size 100d from a N(0 + δ, Id) distribution. If the distance under

consideration for the (displaced distribution) data sample to the original data sample is larger

than the 95% percentile we conclude that the present distance is able to discriminate between both

populations and this is the value δ∗ referenced in Table 2. To make the process as independent as

possible from randomness we repeat this process 100 times and fix δ∗ to the present δ value if the

distance is above the percentile in 90% of the cases. Thus we are calculating the minimal value δ∗

required for each metric in order to discriminate between populations with a 95% confidence level
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(type I error = 5%) and a 90% sensitivity level (type II error = 10%). In Table 2 we report the

minimum distance (δ∗
√
d) between distributions centers required to discriminate for each metric

in several alternative dimensions, where small values implies better results. In the particular case

of the T -distance for normal distributions we can use the Hotelling test to compute a p-value to

fix the δ∗ value.

Table 2: δ∗
√
d for a 5% type I and 10% type II errors.

Metric d: 1 2 3 4 5 10 15 20 50 100

KL .870 .636 .433 .430 .402 .474 .542 .536 .495 .470
T .490 .297 .286 .256 .246 .231 .201 .212 .193 .110
Energy .460 .283 .284 .250 .257 .234 .213 .223 .198 .141
WLS(1) .490 .354 .277 .220 .224 .221 .174 .178 .134 .106
WLS(2) .450 .283 .268 .240 .229 .231 .232 .223 .212 .134
WLS(3) .490 .424 .329 .300 .291 .237 .240 .225 .219 .141

The data chosen for this experiment are ideal for the use of the T statistics that, in fact, outper-

forms KL (results in Table 2). However, Energy distance works even better than T distance in

dimensions 1 to 4 and WLS(1) performs similarly (slightly better) to T (except for dimension 2)

in dimensions upon 3.

In a second experiment we consider again normal populations but different variance-covariance

matrices. Define as an expansion factor σ ∈ R and increase σ by small amounts (starting from

0) in order to determine the smallest σ∗ required for each metric in order to discriminate between

the 100d sampled data points generated for the two distributions: N(0, Id) and N(0, (1 + σ)Id).

If the distance under consideration for the (displaced distribution) data sample to the original

data sample is larger than the 95% percentile we conclude that the present distance is able to

discriminate between both populations and this is the value (1+σ∗) reported in Table 3. To make

the process as independent as possible from randomness we repeat this process 100 times and fix

σ∗ to the present σ value if the distance is above the 90% percentile of the cases, as it was done

in the previous experiment.
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Table 3: (1 + σ∗) for a 5% type I and 10% type II errors.
Metric dim: 1 2 3 4 5 10 15 20 50 100

KL 3.000 1.700 1.250 1.180 1.175 1.075 1.055 1.045 1.030 1.014
T − − − − − − − − − −
Energy 1.900 1.600 1.450 1.320 1.300 1.160 1.150 1.110 1.090 1.030
WLS(1) 1.700 1.350 1.150 1.120 1.080 1.050 1.033 1.025 1.015 1.009
WLS(2) 1.800 1.450 1.220 1.200 1.180 1.080 1.072 1.070 1.045 1.020
WLS(3) 1.900 1.450 1.300 1.280 1.380 1.118 1.165 1.140 1.090 1.032

We can see here again that the proposed metric WLS(1) is better than the competitors in all

dimensions considered, begin the WLS(2) the second best in performance. There are no entries

in Table 3 for the T distance because it was not able to distinguish between the considered

populations in none of the considered dimensions.

4.2 Real case-studies

4.2.1 Text Mining

For the first real data example, we consider a collection of 1774 documents (corresponding to 13

topics) extracted from three bibliographic data bases (LISA, INSPEC and Sociological Abstracts).

We present a brief summary list of topics considered in each data base:

LISA

---------------------------

business archives in de 137

lotka’s law 90

biology in de 280

automatic abstracting 69

-----------------------------

INSPEC:

-------------------------------

Self organizing maps 83
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dimensionality reduction 75

power semiconductor devices 170

optical cables 214

feature selection 236

----------------------------------

SOCIOLOGICAL ABSTRACTS:

----------------------------------

Intelligence tests 149

Retirement communities 74

Sociology of literature and discourse 106

Rural areas and rural poverty 91

Each document is converted into a vector into the Latent Semantic Space using the Singular Value

Decomposition, and the documents corresponding to one topic are considered as a sample from the

underlying distribution that generates the topic. Next we calculate the 13 × 13 distance matrix

and perform MDS, not on the individual documents, but on the document sets. The result is

shown in Figures 6 and 7, where we can see that close groups correspond to close (in a semantic

sense) topics, that indicates the distance is working properly in a nonparametric setting in high

dimension.
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Figure 6: Dendrogram for the 13× 13 document data set distance.

Figure 7: Multidimensional Scaling of the 13 groups of documents.
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4.2.2 Shape Classification

As an application of the preceding theory to the field of pattern recognition we consider a cases

of shape classification problem. For this we consider the Tree Leaf Database [19]. We represent

each leaf by a cloud of points in R2, as an example of the treatment given to a leaf consider the

Figure 8.

Figure 8: Real image and sampled image of a leaf in the Tree Leaf Database.

For each image i of size Ni×Mi we generate a uniform sample of size NiMi and retain only those

points which fall into the white region (image body) whose intensity gray level are larger than a

fixed threshold (.99). This yield a representation of the leaf with around one thousand and two

thousand points depending on the image. After rescaling and centering, we computed the 10× 10

distance matrix (using the WLS(2) distance and the Energy distance in this case) and the MDS

plot in Figure 9. It is clear that the WLS distance is able to better account for differences in

shapes.
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Figure 9: Multi Dimensional Scaling representation for leaf database based on WLS(2) (a) and

Energy distance (b).

5 Conclusions

In this paper we afford the task of defining distance functions for data sets (and distributions) in

a functional data analysis context. To this aim we introduce kernels that provide a metrization

of P (X), which allows the use of the natural metric induced by the kernel function. An inter-

esting point is that kernels used in this work take into account the underlying (data) generating

probability distributions. The estimation of these set/PM kernel distances, does not require the

use of either parametric assumptions or explicit probability function parameter estimations, which

makes a clear advantage over most well established PM distances, such as the families of Bregman

divergences, f-divergences and Integral Probability Metrics.

A battery of real and simulate examples have been used to study the performance of the new

distance. In particular in the case of normally distributed data, the generated data sets are ideal for

the use of T-statistics, but the proposed distances show superior discrimination power. Regarding

the practical applications, the new PM distances have been proven to be very competitive in shape
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recognition and text mining problems.

Future Work: Given a positive definite function K : P (X)× P (X)→ [0, 1], as it is defined in

Equation 5, by Mercer’s theorem there exists an Euclidean space H and a lifting map Φ : P (X)→

H such that K(A,B) = 〈Φ(A),Φ(B)〉 with A, B ∈ P (X) [23, 34, 40]. The study of the lifting

map Φ : P (X)→ H is the object of our immediate research, in order to understand the geometry

induced by the proposed metric and the asymptotic properties of the developed distances.

Acknowledgments This work was partially supported by projects DGUCM 2008/00058/002,

MEC 2007/04438/001 and MIC 2012/00084/00.

References

[1] C. Ahlbrandt, G. Benson G and W.Casey. Minimal entropy probability paths between genome

families. J Math Biol. 2004 May;48(5):563-90.

[2] S.-I. Amari, O. E. Barndorff-Nielsen, R. E. Kass, S. L. Lauritzen and C. R. Rao. Differential

Geometry in Statistical Inference. Lecture Notes-Monograph Series, Vol 10, 1987.

[3] S. Amari, H. Nagaoka Methods of Information Geometry. American Mathematical Society.

2007.

[4] C. Atkinson and A. F. S. Mitchell. Rao’s Distance Measure. The Indian Journal of Statistics,

Series A. Vol 43, pp 345-365, 1981.

[5] A. Banerjee, S. Merugu, I. Dhillon, J. Ghosh. Clustering whit Bregman Divergences. Journal

of Machine Learning Research, pp 1705:1749, 2005.

[6] S. Boltz, E. Debreuve and M. Barlaud. High-dimensional statistical measure for region-of-

interest tracking. Transactions in Image Processing, vol. 18, no. 6, pp 1266:1283, 2009.

24



[7] J. Burbea and C. R. Rao. Entropy differential metric, distance and divergence measures in

probability spaces: A unified approach. Journal of Multivariate Analysis, Vol 12, pp. 575-596,

1982.

[8] S.H Cha. Comprehensive survey on distance/similarity measures between probability density

functions. International Journal of Mathematical Models and Methods in Applied Sciences,

vol. 1(4), pp.300-307, 2007.

[9] F. Chazal, D. Cohen-Steiner, and Q. Mrigot. Geometric Inference for Probability Measures.

Journal on Foundations of Computational Mathematics, 11(6):733-751, 2011.

[10] A. Cichocki and S. Amari. Families of Alpha- Beta- and Gamma- Divergences: Flexible and

Robust Measures of Similarities. Entropy, 12, 1532-1568, 2010.

[11] I. Csiszár and P. Shields. Information Theory and Statistics: A Tutorial. Foundations and

Trends in Communications and Information Theory, 2004.

[12] M.M. Deza and E. Deza. Enciclopedia of Distances. Springer, 2009.

[13] I.L. Dryden, A. Koloydenko and D. Zhou. Non-Euclidean statistics for covariance matrices,

with applications to diffusion tensor imaging. The Annals of Applied Statistics, vol. 3, pp.

1102-1123, 2009.

[14] I.L. Dryden, A. Koloydenko and D. Zhou. The Earth Mover’s Distance as a Metric for Image

Retrieval. International Journal of Computer Vision, Vol. 40, pp. 99-121, 2000.

[15] B.A. Frigyik, S. Srivastava and M. R. Gupta. Functional Bregman Divergences and Bayesian

Estimation of Distributions. IEEE Transactions on Information Theory 54 (11): 51305139,

2008.

[16] A. L. Gibbs and F. E. Su. On Choosing and Bounding Probability Metrics. Journal of

International Statistical Review, 2002.

25



[17] M. N. Goria, N. N. Leonenko, V. V. Mergel and P. L. Novi Inverardi. A new class of random

vector entropy estimators and its applications in testing statistical hypotheses. Journal of

Nonparametric Statistics, vol. 13, No. 3, pp. 277-297, 2005.

[18] A. Gretton, K. Borgwardt, M. Rasch, B. Schlkopf, A. Smola. A kernel method for the two

sample problem. Advances in Neural Information Processing Systems, pp. 513-520, 2007.

[19] Institute of Information Theory and Automation ASCR. LEAF - Tree Leaf Database. Prague,

Czech Republic, http://zoi.utia.cas.cz/tree leaves.

[20] S. Joshi, R. Kommaraju, J. Phillips and S. Venkatasubramaian. Comparing distributions and

shapes using the kernel distance. arXiv:1001.0591v2, 2011.

[21] G. Lebanon. Metric Learning for Text Documents. IEEE Trans on Pattern Analysis and

Machine Intelligence, 28:4, 497-508,2006.

[22] S. Mallat. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 11:7, pp. 674-693.
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