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ABSTRACT 
The concept of causality is naturally defined in terms of conditional  distribution, however almost 

all the  empirical  works focus on causality  in mean.   This  paper  aim to propose a nonparametric 
statistic to  test  the  conditional  independence  and  Granger  non-causality between  two  variables 
conditionally on another one. The test  statistic is based on the comparison  of conditional  
distribution functions  using an L2  metric.  We use Nadaraya-Watson method  to estimate  the  

conditional  distribution functions.   We establish  the  asymptotic size and  power properties  of the  
test  statistic and  we motivate  the  validity  of the  local bootstrap.  Further, we ran  a simulation  
experiment to investigate  the  finite sample  properties  of the  test  and  we illustrate its practical 
relevance  by examining  the  Granger  non-causality between  S&P  500 Index  returns and  VIX 
volatility  index. Contrary  to the conventional  t-test, which is based on a linear mean-regression  
model, we find that VIX index predicts  excess returns both  at short  and long horizons. 
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1 Introduction

This paper proposes a nonparametric test for conditional independence between two random vari-

ables of interest Y and Z conditionally on another variable X, based on comparison of conditional

cumulative distribution functions. Since the concept of causality can be viewed as a form of con-

ditional independence, see Florens and Mouchart (1982) and Florens and Fougère (1996), tests for

Granger non-causality between Y and Z conditionally on X can also be deduced from the proposed

conditional independence test.

The concept of causality introduced by Granger (1969) [see also Wiener (1956)] is now a basic

notion when studying dynamic relationships between time series. This concept is defined in terms

of predictability at horizon one of a variable Y from its own past, the past of another variable Z,

and possibly a vector X of auxiliary variables. Following Granger (1969), the causality from Z to

Y one period ahead is defined as follows: Z causes Y if observations on Z up to time t−1 can help

to predict Yt given the past of Y and X up to time t − 1. The theory of causality has generated

a considerable literature and for reviews see Pierce and Haugh (1977), Newbold (1982), Geweke

(1984), Lütkepohl (1991), Boudjellaba, Dufour, and Roy (1992), Boudjellaba, Dufour, and Roy

(1994), Gouriéroux and Monfort (1997, Chapter 10), Saidi and Roy (2008), Dufour and Renault

(1998), Dufour and Taamouti (2010) among others.

To test non-causality, early studies often focus on the conditional mean, however the concept of

causality is naturally defined in terms of conditional distribution [see Granger (1980) and Granger

and Newbold (1986)]. Causality in distribution has been less studied in practice, but empirical evi-

dence show that for many economic and financial variables, e.g . returns and output, the conditional

quantiles are predictable, but not the conditional mean. Lee and Yang (2006), using U.S. monthly

series on real personal income, output, and money, find that quantile forecasting for output growth,

particularly in tails, is significantly improved by accounting for money. However, money-income

causality in the conditional mean is quite weak and unstable. Cenesizoglu and Timmermann (2008)

use quantile regression models to study whether a range of economic state variables are helpful in

predicting different quantiles of stock returns. They find that many variables have an asymmetric

effect on the return distribution, affecting lower, central and upper quantiles very differently. The

upper quantiles of the return distribution can be predicted by means of economic state variables

although the center of the return distribution is more difficult to predict. Further, it is possible

to have situations where the causality in low moments (mean, variance) does not exist, but it

does exist in high moments. Hence, non-causality tests should be defined based on distribution

functions.

Several nonparametric tests are available to test for independence between random variables,

starting with the rank-based test of Hoeffding (1948), including empirical distribution-based meth-
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ods such as Blum, Kiefer, and Rosenblatt (1961) or Skaug and Tjøstheim (1993), smoothing-based

methods like Rosenblatt (1975), Robinson (1991), and Hong and White (2005). Further, non-

parametric regression tests are also introduced by Fan and Li (1996) who develop tests for the

significance of a subset of regressors and tests for the specification of the semiparametric functional

form of the regression function. Fan and Li (2000) compare the power properties of various kernel

based nonparametric tests with the integrated conditional moment tests of Bierens and Ploberger

(1997). Delgado and González Manteiga (2001) propose a test for selecting explanatory variables in

nonparametric regression. The asymptotic null distribution of the test depends on certain features

of the data generating process. To estimate the critical values, they use the wild bootstrap based on

nonparametric residuals. Delgado and González Manteiga (2001) [see their section 5] also propose

an omnibus test of conditional independence using the weighted difference of the estimated condi-

tional distributions under the null and the alternative. With respect to nonparametric conditional

independence tests, Linton and Gozalo (1997) develop a non-pivotal nonparametric empirical dis-

tribution function based test of conditional independence. The asymptotic null distribution of the

test statistic is a functional of a Gaussian process and the critical values are computed using the

bootstrap. Finally, Lee and Whang (2009) provide a nonparametric test for the treatment effects

conditional on covariates.

The above nonparametric independence tests are derived under an i.i.d. assumption. Only a

few recent papers have been proposed to test nonparametrically for conditional independence using

time series data. Su and White (2003) construct a class of smoothed empirical likelihood-based

tests which are asymptotically normal under the null hypothesis and they derive their asymptotic

distributions under a sequence of local alternatives. The tests are shown to possess a weak optimal-

ity property in large samples and simulation results suggest that these tests behave well in finite

samples. Su and White (2007) propose a nonparametric test based on the conditional character-

istic function. They work with the squared Euclidean distance and need to specify two weighting

functions in the test statistic. Su and White (2008) propose a nonparametric test based on density

functions and the weighted Hellinger distance. Their test is consistent, asymptotically normal under

β-mixing conditions, and has power against alternatives at distance T−1/2h−d/4 where T denotes

the sample size, h the bandwidth parameter and d the dimension of the vector of all variables in

the study. Recently, Bouezmarni, Rombouts, and Taamouti (2011) provide a nonparametric test

for conditional independence based on comparison of Bernstein copula densities using the Hellinger

distance. Their test statistic does not involve a weighting function and it is asymptotically pivotal

under the null hypothesis. Finally, Song (2009) proposes a Rosenblatt-transform based test of con-

ditional independence between two random variables given a real function of a random vector. The

function is supposed known up to an unknown finite dimensional parameter. He suggests to use a

wild bootstrap method in a spirit similar to Delgado and González Manteiga (2001) to approximate
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the distribution function of his test statistics.

In this paper, we propose a nonparametric statistic to test for conditional independence and

Granger non-causality between two random variables. The test statistic compares the conditional

cumulative distribution functions based on an L2 metric. We use the Nadaraya-Watson (NW)

estimator to estimate the conditional distribution functions. We establish the asymptotic size and

power properties of the conditional independence test statistics and we motivate the validity of

the local bootstrap. We show that our conditional distribution-based test is more powerful than

Su and White (2008)’s test and it has the same asymptotic power compared to the characteristic

function-based test of Su and White (2007). Furthermore, our test is very simple to implement

compared to the test of Su and White (2007). We also ran a simulation study to investigate the

finite sample properties of the test. The simulation results show that the test behaves quite well in

terms of size and power properties.

We illustrate the practical relevance of our nonparametric test by considering an empirical

application where we examine the Granger non-causality between S&P 500 Index returns and VIX

volatility index. Contrary to the conventional t-test based on a linear mean-regression model, we

find that VIX index predicts excess returns both at short and long-run horizons. This presents

evidence in favor of the existence of nonlinear volatility feedback effect that explains the well known

asymmetric relationship between returns and volatility.

The paper is organized as follows. In Section 2, we discuss the null hypothesis of conditional

independence, the alternative hypothesis and we define our test statistic. In Section 3, we establish

the asymptotic distribution and power properties of the proposed test statistic and we motivate

the validity of the local bootstrap. In Section 4, we investigate the finite sample size and power

properties. Section 5 contains an application using financial data. Section 6 concludes. The proofs

of the asymptotic results are presented in Section 7.

2 Null hypothesis

Let VT = {Vt ≡ (Xt, Yt, Zt)}T
t=1 be a sample of weakly dependent random variables in Rd1 ×Rd2 ×

Rd3 , with joint distribution function F and density function f . For the reminder of the paper,

we assume that d2 = 1 which corresponds to the case of most practical interest. Suppose we

are interested in testing the conditional independence between the random variables of interest

Y and Z conditionally on X. The linear mean-regression model is widely used to capture and

test the dependence between random variables and the least squares estimator is optimal when

the errors in the regression model are normally distributed. However, in the mean regression the

dependence is only due to the mean dependence, thus we ignore the dependence described by high-

order moments. The use of conditional distribution functions will allow to capture the dependence

due to both low and high-order moments. Thus, testing the conditional independence between Y
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and Z conditionally on X, corresponds to test the null hypothesis

H0 : Pr {F (y | (X, Z)) = F (y | X)} = 1, ∀y ∈ Rd2 ,

against the alternative hypothesis

H1 : Pr {F (y | (X, Z)) = F (y | X)} < 1, for some y ∈ Rd2 . (1)

Since the conditional distribution functions F (y | (X,Z)) and F (y | X) are unknown, we use a

nonparametric approach to estimate them. The kernel method is simple to implement and it is

widely used to estimate nonparametric functional forms and distribution functions; for a review see

Troung and Stone (1992) and Boente and Fraiman (1995). To estimate the conditional distribution

function, we use the Nadaraya-Watson approach proposed by Nadaraya (1964) and Watson (1964);

for a review see Simonoff (1996), Li and Racine (2007), Hall, Wolff, and Yao (1999), and Cai (2002).

If we denote v = (x, y, z) ∈ Rd1 ×Rd2 ×Rd3 , V = (X,Z) and v̄ = (x, z), then the Nadaraya-Watson

estimator of the conditional distribution function of Y given X and Z is defined by

F̂h1(y|v̄) =

∑T
t=1 Kh1(v̄ − Vt) IAYt

(y)
∑T

t=1 Kh1(v̄ − Vt)
, (2)

where Kh1(.) = h
−(d1+d3)
1 K(./h), for K(.) a kernel function, h1 = h1,n is a bandwidth parameter,

and IAYt
(.) is an indicator function defined on the set AYt = [Yt,+∞). Similarly, the Nadaraya-

Watson estimator of the conditional distribution function of Y given only X is defined by:

F̂h2(y|x) =

∑T
t=1 K∗

h2
(x−Xt) IAYt

(y)
∑T

t=1 K∗
h2

(x−Xt)
, (3)

where K∗
h2

(.) = h−d1
2 K∗(./h), for K∗(.) a different kernel function, and h2 = h2,n is a different

bandwidth parameter. Notice that the Nadaraya-Watson estimator for the conditional distribution

is positive and monotone.

To test the null hypothesis (1) against the alternative hypothesis (1), we propose the following

test statistic which is based on the conditional distribution function estimators

Γ̂ =
1
T

T∑

t=1

{
F̂h1(Yt|Vt)− F̂h2(Yt|Xt)

}2
w(Vt), (4)

where w(.) is a nonnegative weighting function of the data Vt, for 1 ≤ t ≤ T . In the simulation

and application sections, and because we standardized the data, we consider a bounded support

for the weight w(.). In the latter case we suggest to use a large bandwidth parameter for the

estimation of the conditional distribution function in the tails. The weight w(.) could be useful

for testing the causality in a specific range of data. For example to test Granger causality from

some economic variables (e.g. inflation; gross domestic product,...) to positive income. Further, to
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overcome a possible boundary bias in the estimation of the distribution function, we suggest to use

the weighted Nadaraya-Watson (WNW) estimator of the distribution function proposed by Hall,

Wolff, and Yao (1999) for β-mixing data and by Cai (2002) for α-mixing data. However, in these

cases the test will be valid only when d1 + d3 < 8. Finally, observe that the test statistic Γ̂ in (4)

depends obviously on the sample size and it is close to zero if conditionally on X, the variables

Y and Z are independent and it diverges in the opposite case. Further, in the present paper we

focus on the L2 distance, however other distances like Hellinger distance, Kullback measure, and

Lp distance, can also be considered.

3 Asymptotic distribution and power of the test statistic

In this section, we provide the asymptotic distribution of our test statistic Γ̂ and we derive its power

function against local alternatives. We also establish the asymptotic validity of the bootstrapped

version of the test statistic. Since we are interested in time series data, an assumption about the na-

ture of the dependence in the individual time series is needed to derive the asymptotic distributions.

We follow the literature on U-statistics and assume β−mixing dependent variables; see Tenreiro

(1997) and Fan and Li (1999) among others. To recall the definition of a β−mixing process, let’s

consider {Vt; t ∈ Z} a strictly stationary stochastic process and denote F t
s the σ−algebra generated

by the observations (Vs, ..., Vt), for s ≤ t. The process {Vt} is called β-mixing or absolutely regular

if

β(l) = sup
s∈N

E


 sup

A∈F+∞
s+l

∣∣P (A|Fs
−∞)− P (A)

∣∣

 → 0, as l →∞.

For more details about mixing processes, the reader can consult Doukhan (1994). Other additional

assumptions are needed to show the asymptotic normality of our test statistic. We assume a set of

standard assumptions on the stochastic process and on the bandwidth parameter in the Nadaraya-

Watson estimators of the conditional distribution functions.

Assumption A.1 (Stochastic Process)

A1.1 The process
{
Vt = (Xt, Yt, Zt) ∈ Rd1 × Rd2 × Rd3 , t ∈ Z}

is strictly stationary and absolutely

regular with mixing coefficients β(l), such that β(l) = O(νl), for some 0 < ν < 1.

A1.2 The conditional distribution functions F (y|X) and F (y|X,Z) are (r + 1) times continuously

differentiable with respect to X and (X, Z), respectively, for some integer r ≥ 2, and bounded

on Rd. The marginal densities of Xt and Vt = (Xt, Zt), denoted by g∗ and g respectively, are

twice differentiable and bounded away from zero on the compact support of w(.).

Assumption A.2 (Kernel and Bandwidth)
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A2.1 The kernels K and K∗ are the product of a univariate symmetric and bounded kernel k :

R → R, i.e. K(η1, ..., ηd1+d3) =
∏d1+d3

j=1 k(ηj) and K∗(η1, ..., ηd1) =
∏d1

j=1 k(ηj), such that∫
R k(ζ)dζ = 1 and

∫
R ζik(ζ)dζ = 0 for 1 ≤ i ≤ r − 1 and

∫
R ζrk(ζ)dζ < ∞.

A2.2 As T → ∞, the bandwidth parameters h1 and h2 are such that h1, h2 → 0, h2 = o(h1) and

hd1+d3
1 = o(hd1

2 ). Further, as T →∞, Th
(d1+d3)
1 →∞ and Th

(d1+d3)/2+2r
1 → 0.

Assumption A1.1 is often considered in the literature and it is satisfied by many processes such

as ARMA, GARCH, ACD and stochastic volatility models [see Carrasco and Chen (2002) and

Meitz and Saikkonen (2002) among others]. Assumption A1.2 is needed to derive the bias and

variance of the Nadaraya-Watson estimators of the conditional distribution functions. The integer

r in assumptions A1.2 and A2.1 depends on the dimension of the data, i.e., for example with

d1 = d2 = d3 = 1, we can consider the Gaussian kernel function (r = 2). But for a higher dimension,

a higher order kernel function is required. According to Assumption A2.2, if h1 = constant T−1/ψ

is considered, then d1 + d3 < ψ < (d1 + d3)/2 + 2r.

3.1 Asymptotic distribution of the test statistic

Before presenting the main result, we first define the following terms:

D1 = C1h
−(d1+d3)
1

∫
vt
{w(v̄t)(1− F (yt|v̄t))/g(vt)} f(vt)dvt,

D2 = C2h
−d1
2

∫
vt
{w∗(xt)(1− F (yt|xt))/g∗(xt)} f(xt, yt)dxtdyt,

D3 = −2C3h
−d1
1

∫
vt
{w(v̄t)(1− F (yt|v̄t))/g∗(xt)} f(vt)dvt,

D = (D1 + D2 + D3)/T ,

(5)

where f(xt, yt) =
∫

f(vt)dzt,

w∗(v̄) =
∫

z

w(v̄)g(v̄)
g∗(x)

dz,

C1 =
∫

K2(x, z)dxdz, C2 =
∫

K∗2(x)dx, C3 = K∗(0).

Further, we denote

σ2 =
C

6

∫

vt

w2(v̄t)
g(v̄t)

{1− F (yt|v̄t)}2 (1 + 2F (yt|v̄t)) f(vt)dvt, (6)

where

C =
∫

a1,a3

(∫

b1,b3

K
(
b̄ + ā

)
K

(
b̄
)
db1db3

)2

da1da3,

for ā = (a1, a3) and b̄ = (b1, b3) in Rd1+d3 . The following theorem establishes the asymptotic

normality of the test statistic Γ̂ defined in (4). In the sequel, “ d→” stands for convergence in

distribution.
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Theorem 1 If Assumptions A.1 and A.2 hold, then under H0 we have

Th
1
2
(d1+d3)

1 (Γ̂−D) d→ N(0, 2σ2), as T →∞,

where Γ̂ is given by (4) and D and σ2 are defined in Equations (5) and (6), respectively.

Theorem 1 is valid only when d1+d3 < 4r. Hence, for small dimensions, for example d1 = d3 = 1, we

can consider the normal density function as a kernel. However, if the test is for higher dimensions,

a higher order kernel is required. Now, to implement our test statistic, we have to estimate the

bias terms, D1, D2 and D3 and we consider the following consistent estimators:

D̂1 = C1h
−(d1+d3)
1

T

∑T
t=1

{
w(V̄t)(1− F̂h1(Yt|V̄t))/ĝ(Vt)

}
,

D̂2 = C2h
−d1
2

T

∑T
t=1

{
ŵ∗(Xt)(1− F̂h2(Yt|Xt))/ĝ∗(Xt)

}
,

D̂3 = −2C3h
−d1
1

T

∑T
t=1

{
w(V̄t)(1− F̂h1(Yt|V̄t))/ĝ∗(Xt)

}
,

D̂ = (D̂1 + D̂2 + D̂3)/T

where

ŵ∗(Xt) =

∑T
s=1 w(V̄s)K∗

h2
(Xt −Xs)∑T

s=1 K∗
h2

(Xt −Xs)
,

and F̂h1(Yt|Vt), F̂h2(Yt|Xt) are the Nadaraya-Watson estimators of the conditional distribution

functions F (y | (x, z)) and F (y | x) , respectively. The functions ĝ(.) and ĝ∗(.) are consistent esti-

mators for the density functions g(.) and g∗(.), respectively. Here we consider nonparametric kernel

estimators of g and g∗:

ĝ (x, z) =
1
T

T∑

t=1

h
−(d1+d3)
1 K(v̄ − Vt), ĝ∗ (x) =

1
T

T∑

t=1

h−d1
2 K∗(x−Xt)

where the kernels K(.) and K∗(.) are defined in Assumption A.2.1 and the bandwidth parameters

h1 and h2 satisfy A.2.2. Further, a consistent estimator of the variance σ2 in (6) is needed and we

propose the following estimator:

σ̂2 =
C

6T

T∑

t=1

w2(Vt)
ĝ(Vt)

{
1− F̂h1(Yt|V̄t)

}2 (
1 + 2F̂h1(Yt|V̄t)

)
,

where F̂h1(Yt|Vt) and ĝ(.) are defined above. Finally, we reject the null hypothesis when Th
1
2
(d1+d3)(Γ̂−

D̂)/(σ̂
√

2) > zα, where zα is the (1− α)−quantile of the N(0, 1) distribution.
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3.2 Power of the test statistic

Here, we study the consistency and the power of our nonparametric test against fixed or local

alternatives. The following proposition states the consistency of the test for a fixed alternative.

Proposition 1 If Assumptions A.1 and A.2 hold, than the test based on Γ̂ in (4) is consistent

for any distributions F (y | (x, z)) and F (y | x) such that
∫

(F (y|x, z)−F (y|x))2w(x, z)dxdydz > 0.

Now, we examine the power of the above proposed test against local alternatives. We consider the

following sequence of local alternatives

H1(ξT ) : F [T ] (y | (x, z)) = F [T ] (y | x) + ξT ∆(x, y, z),

where F [T ](y|x, z) (resp. F [T ](y|x)) is the conditional distribution of YT,t given XT,t and ZT,t

(resp. of YT,t given XT,t). The notation “[T ]” in F [T ](y|x, z) and F [T ](y|x) is to say that the

difference between the latter distribution functions depends on the sample size T . We suppose that

{(XTt, YTt, ZTt), t = 1, .., T} is a strictly stationary β-mixing process with coefficients β[T ](l) such

that supT β[T ](l) = O(νl), for some 0 < ν < 1 and ||f [T ](x, y, z)−f(x, y, z)||∞ = o(T−1h
−(d1+d3)/2
1 ).

The function ∆(x, y, z) satisfies
∫

∆2(x, y, z)w(x, z)f(x, y, z)dxdydz = γ < ∞, (7)

and ξT → 0 as T →∞.

Proposition 2 (Asymptotic local power properties) Under Assumptions A.1 and A.2 and

under the alternative H1(ξT ) with ξT = T−1/2h
(d1+d3)/4
1 →∞, we have

Th
1
2
(d1+d3)

1 (Γ̂−D) d→ N(γ, 2σ2), as T →∞,

where D, σ2, and γ are defined by (5), (6), and (7), respectively.

Notice that our test has power against alternatives at distance T−1/2h
−(d1+d3)/4
1 compared to that

of Su and White (2008) which has power only against alternatives at distance T−1/2h
−d/4
1 . Further,

our test has an asymptotic power at the same distance as the characteristic function-based test of

Su and White (2007) and it is very simple to implement.
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3.3 Local bootstrap

In finite samples, the asymptotic normal distribution does not generally provide a satisfactory

approximation for the exact distribution of nonparametric test statistic. To improve the finite

sample properties of our test, we propose the use of a local bootstrap. Thus, in practice we

recommend to employ the bootstrap version of our test.

Here, we are in a time series context and we cannot use the simple bootstrap for independent

and identically distributed observations because the conditional dependence structure in the data

would not be preserved. In our context, the local smoothed bootstrap suggested by Paparoditis

and Politis (2000) seems appropriate.

In the sequel, X ∼ fX means that the random variable X is generated from the density function

fX . Consider L1, L2 and L3 three product kernels that satisfy Assumption A2.1 and a bandwidth

kernel h satisfying Assumption A.3 below. The local smoothed bootstrap method is easy to

implement in the following five steps:

(1) We draw a bootstrap sample {(X∗
t , Y ∗

t , Z∗t ), t = 1, ..., T} as follows

X∗
t ∼ T−1h−d1

T∑

s=1

L1(Xs − x)/h;

and conditionally on X∗
t ,

Y ∗
t ∼ h−d2

T∑

s=1

L1 ((Xs −X∗
t )/h)L2 ((Ys − y)/h) /

n∑

s=1

L1 ((Xs −X∗
t )/h)

and

Z∗t ∼ h−d2

T∑

s=1

L1 ((Xs −X∗
t )/h) L3 ((Zs − y)/h) /

T∑

s=1

L1 ((Xs −X∗
t )/h) ;

(2) based on the bootstrap sample, we compute the bootstrap test statistic Γ∗ = Th
1
2
(d1+d3)

1 (Γ̂∗ −
T−1D̂∗)/(σ̂∗

√
2);

(3) we repeat the steps (1)-(2) B times so that we obtain Γ∗j , for j = 1, ..., B;

(4) we compute the bootstrap p-value and for a given significance level α, we reject the null

hypothesis if p∗ < α.

Here we take the same bandwidth parameter h, however different bandwidths could also be con-

sidered. An additional assumption concerning the bandwidth parameter h is required to validate

the local bootstrap in our context.

Assumption A.3 (Bootstrap Bandwidth)

A3.1 As T →∞, h → 0 and Thd+2r/(lnT )γ → C > 0, for some γ > 0.

9



The following proposition establishes the consistency of the local bootstrap for the conditional

independence test.

Proposition 3 (Smoothed local bootstrap) Suppose that Assumptions A.1, A.2 and A.3

are satisfied. Then, conditionally on the observations VT = {Vt ≡ (Xt, Yt, Zt)}T
t=1 and under the

null hypothesis H0, we have

Γ∗ d→ N(0, 1), as T →∞.

The proofs are presented in the Appendix. The finite-sample properties of our nonparametric test

are investigated in the next section.

Table 1: Data generating processes used in the simulation study.

DGP Xt Yt Zt

DGP1 ε1t ε2t ε3t

DGP2 Yt−1 Yt = 0.5Yt−1 + ε1t Zt = 0.5Zt−1 + ε2t

DGP3 Yt−1 Yt = (0.01 + 0.5Y 2
t−1)

0.5ε1t Zt = 0.5Zt−1 + ε2t

DGP4 Yt−1 Yt =
√

h1,tε1t Zt =
√

h2,tε2t

h1,t = 0.01 + 0.9h1,t−1 + 0.05Y 2
t−1 h2,t = 0.01 + 0.9h2,t−1 + 0.05Z2

t−1

DGP5 Yt−1 Yt = 0.5Yt−1 + 0.5Zt−1 + ε1t Zt = 0.5Zt−1 + ε2t

DGP6 Yt−1 Yt = 0.5Yt−1 + 0.5Z2
t−1 + ε1t Zt = 0.5Zt−1 + ε2t

DGP7 Yt−1 Yt = 0.5Yt−1Zt−1 + ε1t Zt = 0.5Zt−1 + ε2t

DGP8 Yt−1 Yt = 0.5Yt−1 + 0.5Zt−1ε1t Zt = 0.5Zt−1 + ε2t

DGP9 Yt−1 Yt =
√

h1,tε1t Zt = 0.5Zt−1 + ε2t

h1,t = 0.01 + 0.5Y 2
t−1 + 0.25Z2

t−1

4 Monte Carlo simulations: size and power

Here, we present the results of a Monte Carlo experiment to illustrate the size and power of

the proposed test using reasonable sample sizes. We have limited our study to two groups of

data generating processes (DGPs) that correspond to linear and nonlinear regression models with

different forms of heteroscedasticity. These DGPs are described in Table 1. The first four DGPs

were used to evaluate the empirical size. In these DGPs, Y and Z are by construction independent.

In the last five DGPs , Y and Z are by construction dependent and have served to evaluate the

power. We have considered two different sample sizes, T = 200 and T = 300. For each DGP

and for each sample size, we have generated 500 independent realizations and for each realization,

10



500 bootstrapped samples were obtained. For estimating the conditional distribution functions,

we have used the normal density function, which is a second-order kernel, hence C1 = 1/2π, C2 =

1/
√

2π, C3| = 1/
√

π, and C = 1/4π. Since optimal bandwidths are not available in the present

paper, we have considered h1 = c1T
−1/4.75 and h2 = c2T

−1/4.25 for various values of c1 and c2,

which corresponds to the most practical . Finally, for generating the bootstrap replications, we

have also used the normal kernel with a different bandwidth, the one provided by the rule of thumb

proposed in Silverman (1986). Because the data are standardized, the weighting function here is

given by the indicator function defined on the set A = {(x, z),−2 ≤ x, z ≤ 2}.
For a given DGP, the 500 independent realizations of length T were obtained as follows:

(1) We generate T + 200 independent and identically distributed noise values (ε1t, ε2t, ε3t)′ ∼
N(0, I3);

(2) Each noise sequence was plugged into the DGP equation to generate (Xt, Yt, Zt−1)′, t =

1, . . . , T + 200. The initial values were set to zero (resp. to one) for Xt, Yt and Zt (resp. for

h1,t and h2,t). To attenuate their impact, the first 200 observations were discarded.

Our test is valid for testing both linear and nonlinear Granger causalities and we have compared

it with the commonly used t-test for linear causality. In the linear causality analysis, we have

examined if the variable Zt−1 explains Yt in the presence of Yt−1, using the following linear regression

model:

Yt = µ + βYt−1 + αZt−1 + εt.

The null hypothesis of Granger non-causality corresponds to H0 : α = 0 against the alternative

hypothesis H1 : α 6= 0. To test H0, the t-statistic is given by tα̂ = α̂
σ̂α̂

, where α̂ is the least squares

estimator of α and σ̂α̂ is the estimator of its standard error σα̂. In presence of possibly dependent

errors εt’s, σ̂α̂ was computed using the commonly used heteroscedasticity autocorrelation consistent

(HAC) estimator suggested by Newey and West (1987).

The empirical sizes of the linear causality test (LIN) and of the distribution-based test (BRT)

for different values of the constants c1 and c2 in the bandwidth parameters are given in Table 2.

Based on 500 replications, the standard error of the rejection frequencies is 0.0097 at the nominal

level α = 5% and 0.0134 at α = 10%. Globally, the sizes of both tests are fairly well controlled

even with series of length T = 200. With LIN, all rejection frequencies are within 2 standard errors

from the nominal levels 5% and 10%. With BRT, at 5%, all rejection frequencies are also within

2 standard errors. However, at 10%, three rejection frequencies are between 2 and 3 standard

errors (two at T = 200 and one at T = 300). There is no strong evidence of overrejection or

underrejection. Finally, with BRT, the empirical sizes seem slightly closer to the corresponding

nominal sizes when c1 = c2 = 1.

The empirical powers of both tests are given in Table 3. As expected, with the linear DGP5,

LIN performs extremely well but the nonparametric test BRT performs almost as well. With the

11



Table 2: Empirical size of the bootstraped nonparametric test of conditional independence.

DGP1 DGP2 DGP3 DGP4 DGP1 DGP2 DGP3 DGP4

T = 200, α = 5% T = 200, α = 10%
LIN 0.047 0.051 0.041 0.053 0.091 0.092 0.098 0.092
BRT, c1=1, c2=1 0.050 0.056 0.044 0.038 0.096 0.104 0.098 0.098
BRT, c1=0.85, c2=0.7 0.048 0.044 0.064 0.056 0.104 0.128 0.132 0.100
BRT, c1=0.75, c2=0.6 0.036 0.048 0.052 0.052 0.096 0.088 0.120 0.088

T = 300, α = 5% T = 300, α = 10%
LIN 0.051 0.060 0.051 0.048 0.095 0.104 0.108 0.110
BRT, c1=1, c2=1 0.053 0.043 0.068 0.040 0.120 0.097 0.110 0.100
BRT, c1=0.85, c2=0.7 0.060 0.036 0.068 0.060 0.120 0.084 0.108 0.130
BRT, c1=0.75, c2=0.6 0.044 0.032 0.060 0.056 0.108 0.076 0.096 0.112
Empirical sizes are based on 500 replications. LIN refers to the linear test and BRT to our test.
c1 and c2 refer to the constants in the bandwidth parameters.

four nonlinear models considered, BRT clearly outperforms LIN. In most cases, BRT produces

the greatest power when c1 = c2 = 1. Finally, at both levels 5% and 10%, the powers increase

considerably with DGP6, DGP7 and DGP9, when T goes from 200 to 300.

5 Application: Stock return predictability using VIX

We use real data to illustrate the practical importance of the proposed nonparametric test. We

show that using tests based on linear models may lead to wrong conclusions about the existence

of a relationship between financial variables. We particularly examine the linear and nonlinear

causalities between stock market excess return and volatility index (VIX). We test whether stock

market excess returns can be predictable at short and long-run horizons using the VIX index. We

compare the results using the conventional t-test and the new nonparametric test.

Many empirical studies have investigated whether stock excess returns can be predictable [see

Fama and French (1988), Campbell and Shiller (1988), Kothari and Shanken (1997), Lewellen

(2004), Bollerslev, Tauchen, and Zhou (2009) among many others]. In most of these studies, the

econometric method used is the conventional t-test based on the ordinary least squares regression

of stock returns onto the past of some financial variables.1 Here we examine the short and long-run

stock return predictability using VIX volatility index in a broader framework that allows us to leave

free the specification of the underlying model. Nonparametric tests are well suited for that since
1Previous studies have also considered testing return predictability from past returns, for a review see Lo and

MacKinlay (1988), French and Roll (1986), Shiller (1984), Summers (1986) among others.
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Table 3: Empirical power of the bootstraped nonparametric test of conditional independence.

DGP5 DGP6 DGP7 DGP8 DGP9

α = 5% T = 200
LIN 0.994 0.401 0.184 0.137 0.151
BRT, c1=1, c2=1 0.996 0.812 0.852 1.000 0.936
BRT, c1=0.85, c2=0.7 0.988 0.728 0.792 1.000 0.908
BRT, c1=0.75, c2=0.6 0.976 0.719 0.808 1.000 0.896

T = 300
LIN 1.000 0.412 0.204 0.142 0.171
BRT, c1=1, c2=1 1.000 0.976 0.966 1.000 1.000
BRT, c1=0.85, c2=0.7 1.000 0.884 0.908 1.000 0.984
BRT, c1=0.75, c2=0.6 1.000 0.784 0.868 1.000 0.960

α = 10% T = 200
LIN 1.000 0.410 0.211 0.134 0.161
BRT, c1=1, c2=1 0.992 0.916 0.916 0.984 0.980
BRT, c1=0.85, c2=0.7 0.996 0.844 0.868 1.000 0.960
BRT, c1=0.75, c2=0.6 0.984 0.831 0.854 1.000 0.964

T = 300
LIN 1.000 0.432 0.224 0.159 0.187
BRT, c1=1, c2=1 1.000 1.000 0.951 1.000 1.000
BRT, c1=0.85, c2=0.7 1.000 0.948 0.964 1.000 1.000
BRT, c1=0.75, c2=0.6 1.000 0.912 0.924 1.000 0.984

Empirical powers are based on 500 replications. LIN refers to the linear test
and BRT to our test. c1 and c2 refer to the constants in the bandwidth
parameters.
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they do not impose any restriction on the model linking the dependent variable to the independent

variables.

Recent works use VIX index to predict stock excess returns. Bollerslev, Tauchen, and Zhou

(2009) show that the difference between VIX and realized variation, called variance risk premium,

is able to explain a non-trivial fraction of the time series variation in post 1990 aggregate stock

market returns, with high (low) premia predicting high (low) future returns. In what follows, we

use VIX index together with nonparametric tests to check whether the excess returns on S&P 500

Index are predictable. We compare our results to those obtained using the standard t-test.

5.1 Data description

We consider monthly aggregate S&P 500 composite index over the period January 1996 to Septem-

ber 2008 (153 trading months). Our empirical analysis is based on the logarithmic return on the

S&P 500 in excess of the 3-month T-bill rate. The excess returns are annualized. We also consider

monthly data for VIX index. The latter is an indication of the expected volatility of the S&P 500

stock index for the next thirty days. The VIX is provided by the Chicago Board Options Exchange

(CBOE) in the US, and is calculated using the near term S&P 500 options markets. It is based on

the highly liquid S& P500 index options along with the “model-free” approach. The VIX index time

series also covers the period from January 1996 to September 2008 for a total of 153 observations.

Finally, we performed an Augmented Dickey-Fuller test for nonstationarity of the stock return and

VIX and the stationarity hypothesis was not rejected.

5.2 Causality tests

To test linear causality between S&P 500 excess return and VIX index, we consider the following

linear regression model

exrt+τ = µτ + βτ exrt + ατ V IXt + εt+τ ,

where exrt+τ is the excess return τ months ahead and V IXt represents VIX index at time t. In

the empirical application, we take τ = 1, 2, 3, 6, and 9 months. VIX index does not Granger cause

the excess return τ periods ahead if H0 : ατ = 0. We use the standard t-statistic to test the null

hypothesis H0. To avoid the impact of the dependence in the error terms on our inference, the

t-statistic is based on the commonly used HAC robust variance estimator. The results of linear

causality (predictability) tests between stock excess returns and VIX index are presented in Table

4 [see the second row LIN in Table 4]. At 5% significance level, we find convincing evidence that

excess return can not be predicted at both short and long-run horizons using VIX.

Now, to test for the presence of nonlinear predictability we consider the following null hypothe-

ses:

H0 : Pr {F (exrt+τ | exrt, V IXt) = F (exrt+τ | exrt)} = 1
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against the alternative hypothesis

H1 : Pr {F (exrt+τ | exrt, V IXt) = F (exrt+τ | exrt)} < 1.

Table 4: P-values for linear and nonlinear causality tests between Return at different horizons and
Volatility Index (VIX).

Test statistic / Horizon Return 1 Month 2 Months 3 Months 6 Months 9 Months

LIN 0.433 0.133 0.888 0.954 0.995

BRT c1 = c2 = 1.5 0.000 0.000 0.010 0.000 0.000
BRT c1 = c2 = 1.2 0.000 0.000 0.015 0.000 0.000
BRT c1 = c2 = 1 0.000 0.005 0.025 0.010 0.000
BRT c1 = 0.85, c2 = 0.7 0.000 0.010 0.035 0.036 0.000
BRT c1 = 0.75, c2 = 0.6 0.000 0.045 0.085 0.061 0.005

LIN and BRT correspond to linear test and our nonparametric test, respectively. c1 and c2 refer
to the constants in the bandwidth parameters.

The results of nonlinear causality (predictability) tests between stock excess return and VIX are

also presented in Table 4 [see the rows BRT of Table 4]. Before we start discussing our empirical

results, we have to mention that the data are standardized and the weighting function w(.) is the

same like the one used in the simulation study [see first paragraph of Section 4]. Further, five

different combinations for the values of c1 and c2 are considered. We have seen in the simulation

study that our nonparametric test has generally good properties (size and power) when c1 = c2 = 1.

Therefore, our decision rule will be typically based on the results corresponding to c1 = c2 = 1. At

5% and even 1% significance levels, our nonparametric test show that VIX predicts stock excess

returns both at short and long-run horizons.2

6 Conclusion

We propose a new statistic to test the conditional independence and Granger non-causality between

two variables. Our approach is based on the comparison of conditional distribution functions and

the test statistic is defined using an L2 metric. We use the Nadaraya-Watson approach to estimate

the conditional distribution functions. We establish the asymptotic size and power properties of the

new test and we motivate the validity of the local bootstrap. Our test has power against alternatives
2Other results about testing stock return predictability using variance risk premium are available from the authors

upon request. The variance risk premium is measured by the difference between risk-neutral and physical (historical)
variances. The results using our nonparametric test show that the variance risk premium helps to predict excess
returns at long horizons, but not a short horizons.
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at distance T−1/2h−(d1+d3)/4 compared to that of Su and White (2008), which has power only for

alternatives at distance T−1/2h−d/4, where d = d1 +d2 +d3. Further, in term of power against local

alternatives, our test has the same performance compared to the test of Su and White (2007) and it

is very simple to implement. We ran a simulation study to investigate the finite sample properties

(size and power) of the test and the results show that the test behaves quite well in terms of size

and power.

We illustrate the practical relevance of our nonparametric test by considering an empirical

application where we examine Granger non-causality between S& P500 Index returns and VIX

volatility index. Contrary to the linear causality analysis based on the conventional t-test, we find

that VIX index predicts stock excess returns both at short and long-run horizons.

Finally, our test can be extended to data with mixed variables, i.e., continuous and discrete

variables, by using the estimator proposed by Li and Racine (2009). Also, a practical bandwidth

choice for the conditional test and an extensive comparison with the existing tests need further

study.

7 Appendix

We provide the proofs of the theoretical results described in Section 3. The main tool in the proof

of Theorem 1 and Propositions 1 and 2 is the asymptotic normality of U-statistics. To prove

Theorem 1 and Proposition 2, we use Theorem 1 of Tenreiro (1997). To show the validity of the

local smoothed bootstrap in Proposition 3, we use Theorem 1 of Hall (1984). The proofs are in

general inspired from that in Ait-Sahalia, Bickel, and Stoker (2001) and Tenreiro (1997), of course

with adapted calculations for our test.

We first recall Theorem 1 of Tenreiro (1997). Let {Ut, t ∈ Z} be a strictly stationary and

absolutely regular process. Let gT (.) and hT (., .) two Boreal measurable functions on Rd and

Rd × Rd, respectively. Assume that E[gT (U0)] = E[hT (U0, u)] = 0 and hT (u1, u2) = hT (u2, u1) for

all (u1, u2) ∈ Rd × Rd and define

GT ≡ T−1/2
T∑

t=1

gT (Ut),

and

HT ≡ T−1
∑

1≤t1<t2≤T

[hT (Ut1 , Ut2)− E(hT (Ut1 , Ut2))].

Observe that GT and HT are degenerate U-statistics of orders 1 and 2, respectively. Let p be a

positive constant and Ũt, for t ≥ 0, be an i.i.d. sequence, with Ũ0 being an independent copy of U0.

16



Further, define the following terms

uT (p) ≡ max{max1≤t≤T ||hT (Ut, U0)||p, ||hT (Ut, Ũ0)||p},

vT (p) ≡ max{max1≤t≤T ||GT0(Ut, U0)||p, ||GT0(U0, Ũ0)||p},

wT (p) ≡ ||GT0(U0, U0)||p,

zT (p) ≡ max
1≤t1≤T
1≤t2≤T

max{||GTt2(Ut1 , U0)||p, ||GTt2(U0, Ut1)||p, ||GTt2(U0, Ũ0)||p,

where GTt(u1, u2) ≡ E [hT (Ut, u1)hT (U0, u2)] and ||.||p ≡ {E|.|p}1/p. Here is Theorem 1 of Tenreiro

(1997).

Theorem (Tenreiro, 1997) Suppose that there exist δ0, γ1 > 0 and γ0 < 1/2 such that

(i) ||gT (U0)||4 = O(1); (ii) E[gT (Ut)gT (U0)] = ct + o(1), for t≥ 0 ; (iii) uT (4 + δ0) = O(T γ0);

(iv) vT (2) = o(1); (v) wT (2 + δ0/2) = o(T 1/2); (vi) zT (2)T γ1 = O(1); (vii) E[hT (U0, Ũ0)]2 =

2σ̃2
2 + o(1). Then (GT ,HT )′ is asymptotically normally distributed with mean zero and variance-

covariance matrix
[

σ̃2
1 0

0 σ̃2
2

]
, where σ̃2

1 ≡ c0 + 2
∑∞

t=1 ct, with ct = E(gT (U0)gT (Ut)), t ≥ 0.

Now, we establish the asymptotic normality of the test statistic Γ̂ defined in (4). The test statistic

can be rewritten as follows

Γ̂ =
∫ {

F̂h1(y|x, z)− F̂h2(y|x)
}2

w(x, z) dFT (v),

where FT is the empirical distribution function of the random vector Vt. Let’s define the following

pseudo-statistic

Γ =
∫ {

F̂h1(y|x, z)− F̂h2(y|x)
}2

w(x, z) dF (v),

where the empirical distribution function FT (v) in Γ̂ is replaced by the true distribution function

F (v). We begin by studying the asymptotic distribution of Γ. We show, see Lemma 4, that replacing

FT (v) by F (v) will not affect the asymptotic normality of the test statistics Γ̂.

Let’s denote by

J(vt, v) =
Kh1(v − vt) IAyt

(y)
1
T

∑T
t=1 Kh1(v − vt)

− K∗
h2

(x− xt) IAyt
(y)

1
T

∑T
t=1 K∗

h2
(x− xt)

and

J∗(vt, v) = J(vt, v)− E(J(vt, v)),

where IAt is an indicator function defined on the set At. The pseudo-statistic Γ can be written as
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follows

Γ =
1
T 2

∫ (
T∑

t=1

J(Vt, v)

)2

w(x, z)dF (v)

=
2
T 2

T∑
t<s

∫
J(Vt, v)J(Vs, v)w(x, z)dF (v) +

1
T 2

{
T∑

t=1

∫
J2(Vt, v)w(x, z)dF (v)

}

=
2
T 2

T∑
t<s

∫
J∗(Vt, v)J∗(Vs, v)w(x, z)dF (v) +

2
T 2

{
(T − 1)

T∑

t=1

∫
J∗(Vt, v)E2(J(V1, v))w(x, z)dF (v)

}

+
1
T 2

{
T (T − 1)

∫
E2(J(V1, v))w(x, z)dF (v)

}
+

1
T

{
T∑

t=1

∫
J2(Vt, v)w(x, z)dF (v)

}

= 2 T−1h
− (d1+d3)

2
1

{
T−1

T∑
t<s

HT (Vt, Vs)

}
+ 2T−1/2(1− T−1)hr

1

{
T−1/2

T∑

t=1

GT (Vt)

}
+ T−1BT + NT

≡ 2T−1h
− (d1+d3)

2
1 T11 + 2T−1/2(1− T−1)hr

1T12 + T−1BT + NT (8)

where

BT = 1
T

{∑T
t=1

∫
J2(Vt, v)w(x, z)dF (v)

}
, NT = 1

T 2

{
T (T − 1)

∫
E2(J(V1, v))w(x, z)dF (v)

}

T11 = T−1
∑T

t<s HT (Vt, Vs), T12 = T−1/2
∑T

t=1 GT (Vt),
(9)

with

HT (a, b) = h
(d1+d3)

2
1

∫
J∗(a, v) J∗(b, v)w(x, z)dF (v) and GT (a) = h−r

1

∫
J∗(a, v)E(J(a, v))w(x, z)dF (v).

Note that the term T11 is a degenerate U-statistic. The central limit theorem for U-statistics is

developed in Yoshihara (1976), Denker and Keller (1983) and Fan and Li (1999) among others.

We apply Theorem 1 of Tenreiro (1997) to show that the terms T11 and T12 are independent

and asymptotically normal. The variance of T11 is σ2 = 1
2E

[
HT (V0, Ṽ0)

]2
, for {Ṽt, t ≥ 0} an

i.i.d. sequence where Ṽt is an independent copy of Vt. However, under Assumption A.2.2, T12 is

negligible. Further, the term BT gives the bias in the test statistic and it is very important in finite

samples, when the bootstrap method is used to calculate the p-value. The term NT is deterministic

and negligible. To conclude, the test statistics is normal with mean and variance given by BT and

σ2 respectively.

Now, let’s show the asymptotic independence and normality of T11 and T12. To do so, we need

to check the conditions of Theorem 1 in Tenreiro (1997).

Lemma 1 Under Assumptions A.1-A.2 and H0, we have
(

T11

T12

)
d→ N

(
σ̃2 0
0 σ2

)
,
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where σ̃2 < ∞ and

σ2 =
C

6

∫

vt

w2(v̄t)
g(v̄t)

{1− F (yt|v̄t)}2 (1 + 2F (yt|v̄t)) f(vt)dvt. (10)

Proof. Observe that by construction we have E(GT (Vt)) = 0. We can show that conditions (i)

and (ii) are fulfilled. First, we show that supv | GT (v) |< C, where C is a constant. We have

E(J(Vt, v)) = E

(
Kh1(v − Vt) IAt(y)
1
T

∑T
t=1 Kh1(v − Vt)

− K∗
h2

(x−Xt) IAt(y)
1
T

∑T
t=1 K∗

h2
(x−Xt)

)

=
1
r!

µr

{
hr

1F
(r)(y|v̄)− hr

2F
(r)(y|x)

}
+ o(hr

1 + hr
2)

=
1
r!

µrh
r
1F

(r)(y|v̄) + o(hr
1),

under the assumption h2 = o(h1), where F (r) is the rth derivative of F and µr =
∫

srK(s)ds.

Hence, for γ(v) = 1
r!µrF

(r)(y|v̄), we have GT (Vt) =
∫

γ(v)J∗(Vt, v)w(v̄)f(v)dv + op(1). Then, using

assumptions A1.2, A2.1 and a change of variables, we obtain that supv | GT (v) |< C. Therefore,

||GT (V0)||4 = O(1). Second, let’s calculate the covariance between GT (Vt) and GT (V0).

Cov(GT (Vt), GT (Vs)) = E(GT (Vt)GT (Vs))

= E
(∫

J(Vt, v)J(Vs, v
′)ξ(v)ξ(v′)dvdv′

)

−2
∫

J(vt, v)E(J(vs, v
′))ξ(v)ξ(v′)f(vt, vs)dvtdvsdvdv′

+
∫
E(J(vt, v))E(J(vs, v

′))ξ(v)ξ(v′)f(vt, vs)dvtdvsdvdv′ + o(1)

=
∫

J(vt, v)J(vs, v
′)ξ(v)ξ(v′)f(vt, vs)dvtdvsdvdv′ −

(∫
E(J(vs, v))ξ(v)dv

)2

+ o(1),

where ξ(v) = γ(v)w(v̄)f(v). Under Assumption A1 and A2, we have
∣∣∣∣∣

∣∣∣∣∣
1
T

T∑

t=1

Kh1(v − Vt)− g(v)

∣∣∣∣∣

∣∣∣∣∣
∞

= sup
v∈V

∣∣∣∣∣
1
T

T∑

t=1

Kh1(v − Vt)− g(v)

∣∣∣∣∣ = op(1), (11)

and ∣∣∣∣∣

∣∣∣∣∣
1
T

T∑

t=1

K∗
h2

(x−Xt)− g∗(x)

∣∣∣∣∣

∣∣∣∣∣
∞

= sup
x∈X

∣∣∣∣∣
1
T

T∑

t=1

K∗
h2

(x−Xt)− g∗(x)

∣∣∣∣∣ = op(1),

where g (resp. g∗) is the density function of the vector Vt (resp. Xt). Then,
∫

J(vt, v)J(vs, v
′)ξ(v)ξ(v′)f(vt, vs)dvtdvsdvdv′ =

∫ {
Kh1(v − vt) IAt(y)

g(v̄)
− K∗

h2
(x−Xt) IAt(y)

g∗(x)

}

×
{

Kh1(v′ − vs) IAt(y′)
g(v̄′)

− K∗
h2

(x′ − xs) IAt(y′)
g∗(x′)

}

×ξ(v)ξ(v′)f(vt, vs)dvtdvsdvdv′ + op(1).
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The change of variables v − vt/h1 = ā; (a2 = y) and v′ − vs = b, b2 = y′ leads to

∫
J(vt, v)J(vs, v

′)ξ(v)ξ(v′)f(vt, vs)dvtdvsdvdv′ =
∫ {

K(ā) IAt(a2)
g(v̄t)

− hd1+d3
1

hd1
2

K∗(h1xt/h2) IAt(a2)
g∗(xt)

}

{
K(b̄) IAs(b2)

g(v̄s)
− hd1+d3

1

hd1
2

K∗(h1xs/h2) IAt(b2)
g∗(xs)

}

ξ(xt, a2, zt)ξ(x′t, b2, z
′
t)f(vt, vs)dvtdvsdadb + op(1).

If we assume that hd1+d3
1 /hd1

2 = o(1), then
∫

J(vt, v)J(vs, v
′)ξ(v)ξ(v′)f(vt, vs)dvtdvsdvdv′ =

∫ (
K(ā) IAt(a2)

g(v̄t)

)(
K(b̄) IAs(b2)

g(v̄s)

)

ξ(xt, a2, zt)ξ(x′t, b2, z
′
t)f(vt, vs)dvtdvsda db

=
∫

vt,vs

ζ(vt)ζ(vs)f(vt, vs)dvtdvs + op(1),

where ζ(vt) = C∗2 δ(vt)
g(v̄t)

with C∗ =
∫
ā K(ā)dā and δ(vt) =

∫
a2

IAt(a2)ξ(xt, a2, zt)da2. Using similar

arguments, we show that
∫
E(J(Vs, v))ξ(v)dv =

∫

vt

ζ(vt)f(vt)dvt + op(1).

Consequently,

σ̃2 = V ar(ζ(V0)) + 2
∑

i≥1

Cov(ζ(V1), ζ(V1+i)) < ∞.

Now, let us check the conditions (iii)-(vi). Observe that the product J(Vt, v)×J(Vs, v) is composed

of four terms and that the dominant one is

Kh1(v − Vt) IAYt
(y)

1
T

∑T
t=1 Kh1(v − Vt)

× Kh1(v − Vs) IAYs
(y)

1
T

∑T
s=1 Kh1(v − Vs)

.

By equation (11), we have

E
[
HT (V0, Ṽ0)

]2
= h

−3(d1+d3)
1

∫

v0,ṽ0

{∫

v
K

(
v − v0

h1

)
K

(
v − ṽ0

h1

)
ϕ(v̄)IA(y0,ỹ0)

(y)f(v)dv

}2

f(v0)f(ṽ0)dv0 dṽ0 + o(1),

where A(y0,ỹ0) = {v = (x, y, z), max(y0, ỹ0) ≤ y} and ϕ(v̄) = w(v̄)/g2(v).

Now, two changes of variables are needed. The first one is ¯̃v0 = (x̃0, z̃0) = v̄0 + h1 ā, (dṽ0 =

hd1+d3
1 da) with a = (a1, a2, a3)(a2 = ỹ0) and the second one is v̄ = v̄0 + h1(b̄ + ā), (dv = hd1+d3

1 db

with b = (b1, b2, b3)(b2 = y)). We obtain,

E
[
HT (V0, Ṽ0)

]2
=

∫

v0,a

{∫

b
K

(
b̄ + ā

)
K

(
b̄
)
ϕ

(
v̄0 + h1(b̄ + ā)

)
IA(y0,a2)

(b2)

f(x0 + h1(a1 + b1), b2, z0 + h1(a3 + b3))db}2 f(v0)

f((x0 + h1a1, a2, z0 + h1a3)dv0 da + o(1).
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We apply Taylor expansion to deduce that

E
[
HT (V0, Ṽ0)

]2
= C

∫

v0

ϕ2(v̄0)f(v0)
∫

a2

{∫

b2

IA(y0,a2)
(b2)f(x0, b2, z0)db2

}2

f(x0, a2, z0)da2dv0+o(1)

where C =
∫
a1,a3

(∫
b1,b3

K
(
b̄ + ā

)
K

(
b̄
)
db1db3

)2
da1da3 and ϕ(v̄0) = w(v̄0)/g2(v̄0).

Let’s calculate the integration over a2 and b2. In fact,

∫

a2

{∫

b2

IA(y0,a2)
(b2)f(x0, b2, z0)db2

}2

f(x0, a2, z0)da2dv0 = L1 + L2,

where

L1 = g3(v̄0)
∫

a2>y0

{∫

b2>a2

f(b2|v̄0)db2

}2

f(a2|v̄0)da2

=
1
3
g3(v̄0) {1− F (y0|v̄0)}3

and

L2 = g3(v̄0)
∫

a2<y0

{∫

b2>y0

f(b2|v̄0)db2

}2

f(a2|v̄0)da2

= g3(v̄0) {1− F (y0|v̄0)}2 F (y0|v̄0).

Therefore, 2σ2 is given by

E
[
HT (V0, Ṽ0)

]2
=

C

3

∫

v0

w2(v̄0)
g(v̄0)

{1− F (y0|v̄0)}2 (1 + 2F (y0|v̄0)) f(v0)dv0 + o(1).

Now, we check the conditions (iii)-(iv) of Tenreiro (1997). To do that we need to calculate

||HT (Vt, V0)||p = E1/p|HT (Vt, V0)|p and ||GT (Vt, V0)||p, where GT (u, v) = E(HT (V0, u)HT (V0, v)).

E(|HT (Vt, V0)|p) ≈ h
p(d1+d3)

2
1

∫ ∫ ∣∣∣∣∣
∫

Kh1(v̄ − v̄t)1IAyt
(y)

1
T

∑T
t=1 Kh1(v̄ − v̄t)

Kh1(v̄ − v̄0)1IAY0
(y)

1
T

∑T
s=1 Kh1(v̄ − v̄s)

w(x, z)dF (v)|p f(vt, v0)dvt dv0

= h
−p(d1+d3)

2
1

∫ ∫ ∣∣∣∣∣
∫

K((v̄ − v̄t)/h1)1I(yt ≤ y)
1
T

∑T
t=1 Kh1(u− ut)

K((v̄ − v̄0)/h1)1I(y0 ≤ y)
1
T

∑T
s=1 Kh1(u− us)

w(x, z)dF (v)|p f(vt, v0)dvt dv0.

By change of variables, as for E
[
HT (V0, Ṽ0)

]2
, we can show that |HT (Vt, V0)|p = O

(
h

(d1+d3)(1−p/2)
1

)
.

Hence, ||HT (Vt, V0)||p = O
(
h

(d1+d3)(1/p−1/2)
1

)
. With the same argument, we can show that ||HT (V0, Ṽ0)||p =

O
(
h

(d1+d3)(1/p−1/2)
1

)
. Therefore, condition (iii) is fulfilled.
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Let’s now calculate the following term

GT (u, v) = E(HT (V0, u)HT (V0, v))

≈ h
(d1+d3)
1 E

(∫ ∫
{Kh1(ξ̄ − V̄0) IAY0

(ξ2)} {Kh1(ξ̄ − ū)IAu2
(ξ2)}

{Kh1(
¯̃
ξ − V̄0)IAY0

(ξ̃2)} {Kh1(
¯̃
ξ − v̄)IAv2

(ξ̃2)}αū(ξ)αv̄(ξ̃)d ξ d ξ̃
)

≤ Ch
−3(d1+d3)
1

∫ ∫ ∫
K((ξ̄ − ξ̄0)/h1) K((ξ̄ − ū)/h1)K(( ¯̃ξ − ξ̄0)/h1)

K((ξ̃+ − v+)/h1)d ξ d ξ̃d ξ0,

where αX(.) = w(.)f(.)
gU0

(.)gX(.) . By the change of variables, ξ = ξ0 + h1τ , ξ̃ = ξ0 + h1(τ + τ̃) and

ξ0 = u + h1(τ0 − τ), we obtain

GT (u, v) ≤ C

∫ ∫ ∫
K(τ+) K(τ+ + τ̃+)K(τ+

0 ) K(τ+
0 + τ̃+ +

u− v

h1
)d τ d τ̃d τ0 + o(hd1+d3

1 ).

Hence

||GT (Vt, V0)||p = O
(
h(d1+d3)/p

)
and ||GT (Ṽ0, V0)||p = O

(
h(d1+d3)/p

)
.

Then, vT (p) = O(hd/p). Following the same steps, we can show that wT (p) is bounded and

zT (p) ≤ Chd1+d3
1 . Therefore, conditions (iv), (v) and (vi) are fulfilled.

The following lemma provides the asymptotic bias of the pseudo-statistic Γ.

Lemma 2 Under assumptions A.1-A.2 and H0, we have

Th
d1+d3

2
1

(
T−1BT −D

)
= op(1),

where the terms D and BT are defined in (5) and (9

We start with the calculation of the expectation of BT . We have

E(BT ) ≡
∫
E(J(Vt, v))2w(v̄)f(v)dv =

∫
E

(
Kh1(v − Vt) IAt(y)

g(v)
− K∗

h2
(x−Xt) IAt(y)

g(x)

)2

w(v̄)f(v)dv

=
∫
E

(
Kh1(v − Vt) IAt(y)

g(v)

)2

w(v̄)f(v)dv

+
∫

IE

(
K∗

h2
(x−Xt) IAt(y)

g(x)

)2

w(v̄)f(v)dv

−2
∫

IE

(
Kh1(v − Vt) IAt(y)

g(v)

) (
K∗

h2
(x−Xt) IAt(y)

g(x)

)
w(v̄)f(v)dv

= D1 + D2 + D3.
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First, the change of variables, v̄′ = (v̄ − v̄t)/h1 and v′ = (v′1, v
′
2, v

′
3) with v′2 = y, yields

D1 =
∫ ∫

K2
h1

(v − vt) IAt(v′2)
g(v)2

w(v̄)f(v)f(vt)dv dvt

= h
−(d1+d3)
1

∫ ∫
K2(v̄′) IAt(v

′
2)

g(vt)2
w(v̄t)f(xt, v

′
2, zt)f(vt) dvt dv′ + o(1)

= h
−(d1+d3)
1

∫
K2(v̄′)dv̄′

∫

vt

w(v̄t)f(vt)
g(vt)2

∫

v′2
IAt(v

′
2)f(xt, v

′
2, zt)dv′2 dvt.

Since
∫

v′2
IAt(v

′
2)f(xt, v

′
2, zt)dv′2 = g(v̄t)

∫

v′2≥yt

f(v′2|v̄t)dv′2

= g(v̄t)(1− F (yt|v̄t)),

we get

D1 = C1h
−(d1+d3)
1

∫

vt

w(v̄t)
g(vt)

(1− F (yt|v̄t))f(vt)dvt,

where C1 =
∫

K2(v̄′)dv̄′. Second, by the change of variable (x−xt)/h2 = x′ and Taylor expansion,

we have

D2 = h−d1
2

∫

x′,y,z

∫

xt,yt

1
g2(xt)

K∗2(x′)IAt(y)w(x, z)f(xt, y, z)f(xt, yt)dx′dydzdxtdyt.

Under H0, we get ∫

y
f(xt, y, z)IAt(y) = (1− F (yt|xt))g(xt, z)

and hence

D2 = h−d1
2 C2

∫

xt,yt

w∗(xt)(1− F (yt|xt))
g2(xt)

f(xt, yt)dxtdyt,

where C2 =
∫

K2(x)dx. Finally, again using the following change of variables x = xt + h2x
′ and

z = zt + h1z
′, we obtain

−1
2
D3 =

∫ ∫ {
Kh1(v − vt) IAt(y)

g(v)
× K∗

h2
(x− xt) IAt(y)

g(x)

}
w(v̄)f(v)f(vt)dvdvt

= h−d1
1

∫ ∫ {
K(h2

h1
x′, z′) IAt(y)
g(vt)

× K∗(x′) IAt(y)
g(xt)

}
w(v̄t)f(xt, y, zt)f(vt)dvt dx′dz′dy.

Since h2 = o(h1) and
∫
y IAt(y)f(xt, y, zt) = (1− F (yt|v̄t))g(v̄t), we get

D3 = −2C3h
−d1
1

∫
{w(v̄t)(1− F (yt|v̄t))/g(xt)} f(vt)dvt,

where C3 = K(0). Also, note that

V ar
(
T−1BT

) ≡ 1
T 2

T∑

t=1

∫
E(J2

t )w(v̄)f(v)dv = O(T−3h−2(d1+d3)).
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Thus,

V ar

(
Th

d1+d3
2

1 (T−1BT −D)
)
≡ 1

T 2

T∑

t=1

∫
E(J2

t )w(v̄)f(v)dv = o(1),

and this concludes the proof.

Lemma 3 Under assumptions A.1-A.2 and H0, we have

Th
(d1+d3)/2
1 NT = o(1),

where the term NT is defined in (9).

Proof. The proof is straightforward, since E(J(Vt, v)) = O(hr
1) and Th

(d1+d3)/2+2r
1 → 0.

Lemma 4 Under assumptions A.1-A.2 and H0, we have

Th
(d1+d3)/2
1 (Γ̂− Γ) = op(1),

where Γ̂ is defined in (4).

Proof. This result follows using the same argument as in Su and White (2008).

Proof of Proposition 1. This result can be shown by following the same steps as in the proof of

Theorem 1. However, the term NT defined in (9), is now given by

NT =
∫
E2(J(Vt, v))w(x, z)dF (v) + o(1)

=
∫

(F (y|x, z)− F (y|x))2w(x, z)dF (v) + o(1).

Therefore, if
∫

(F (y|x, z) − F (y|x))2w(x, z)dF (v) > 0, we have Th
(d1+d3)/2
1 NT → ∞. Hence, the

test is consistent.

Proof of Proposition 2. First observe that

Γ =
∫ {

F̂h1(y|x, z)− F̂h2(y|x)
}2

w(x, z) dF (v)

=
∫
{F (y|x, z)− F (y|x)}2 w(x, z) dF (v)

+
∫ {

F̂h1(y|x, z)− F̂h2(y|x)− (F (y|x, z)− F (y|x))
}2

w(x, z) dF (v)

+2
∫ {

(F (y|x, z)− F (y|x))(F̂h1(y|x, z)− F̂h2(y|x)− (F (y|x, z)− F (y|x))
}

w(x, z) dF (v).
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Second, under the alternative hypothesis, we have
∫
{F (y|x, z)− F (y|x)}2 w(x, z) dF (v) = T−1h

−(d1+d3)/2
1

∫
∆2(x, y, z)w(x, z) dF (v).

Finally, following the same argument as in the proof of Theorem 1, we obtain

Th
(d1+d3)/2
1

(∫ {
F̂h1(y|x, z)− F̂h2(y|x)− (F (y|x, z)− F (y|x))

}2
w(x, z) dF (v)−D

)
d→ N

(
0, σ2/2

)
.

Proof of Proposition 3. Conditionally on VT = {Vt}T
t=1, the observations {V ∗

t }T
t=1 forms a trian-

gular array of independent random variables. Thus, conditionally on VT , GT (V ∗
t ) and HT (V ∗

t , V ∗
t )

are independent. The result of this proposition is obtained using the similar argument as in the

proof of Theorem 1, with the terms, T11, T12, BT and NT in (8) are replaced by their boost-

raped versions T ∗11, T ∗12, B∗
T and N∗

T , respectively, using the bootstrap data V∗T = {V ∗
t }T

t=1. Thus,

conditionally on VT and using Theorem 1 of Hall (1984), we get the result in Proposition 3.
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