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a b s t r a c t

The paper addresses pricing issues in imperfect and/or incomplete markets if the risk level of the hedging

strategy is measured by a general risk function. Convex Optimization Theory is used in order to extend

pricing rules for a wide family of risk functions, including Deviation Measures, Expectation Bounded Risk

Measures and Coherent Measures of Risk. Necessary and sufficient optimality conditions are provided in

a very general setting. For imperfect markets the extended pricing rules reduce the bid ask spread. The

findings are particularized so as to study with more detail some concrete examples, including the Condi

tional Value at Risk and some properties of the Standard Deviation. Applications dealing with the valu

ation of volatility linked derivatives are discussed.

1. Introduction

General risk functions are becoming more and more important

in finance. Since the paper of Artzner et al. (1999) introduced the

axioms and properties of their ‘‘Coherent Measures of Risk”, many

authors have extended the discussion. Hence, it is not surprising

that the recent literature presents many interesting contributions

focusing on new methods for measuring risk levels. Among others,

Goovaerts et al. (2004) have introduced the Consistent Risk Mea

sures, and Rockafellar et al. (2006a) have defined the Deviations

and the Expectation Bounded Risk Measures.

Many classical financial problems have been revisited by using

new risk functions. So, Mansini et al. (2007) deal with Portfolio

Choice Problems with complex risk measures, Alexander et al.

(2006) compare the minimization of the Value at Risk (VaR) and

the Conditional Value at Risk (CVaR) for a portfolio of derivatives,

Calafiore (2007) studies ‘‘robust” efficient portfolios if risk levels

are given by Standard Deviations and absolute deviations, and

Schied (2007) deals with Optimal Investment with Convex Risk

Measures.

The extension of pricing rules to the whole space in incomplete

markets is a major topic in finance. Several papers have used

Coherent Measures of Risk to price and hedge under incomplete

ness, though the article by Nakano (2004) seems to be an interest

ing approach that also incorporates previous and significant

contributions of other authors. Another line of research is related

to the concept of ‘‘good deal”, introduced in the seminal paper by

Cochrane and Saa Requejo (2000). A good deal is not an arbitrage

but is close to an arbitrage, so the absence of good deal may be

an adequate assumption if it is used for pricing.

In recent papers Jaschke and Küchler (2001) and Staum (2004)

extended the notion of good deal so as to involve coherent mea

sures of risk, and they introduced the ‘‘coherent prices” as upper

and lower bounds that every extension of the pricing rule to the

whole space must respect. They allowed for imperfections in the

initial market and also studied existence properties and other clas

sical issues. Later Cherny (2006) also dealt with pricing issues with

risk measures in incomplete markets, though it is not the major fo

cus of the article.

The present paper considers an initial incomplete and maybe

imperfect market and deals with the Expectation Bounded Risk

Measures and the Deviation Measures of Rockafellar et al.

(2006a) in order to extend the pricing rule to the whole space. As

we will see, the Representation Theorems of Risk Measures pro

vided by the authors above are very appropriate to simplify the

Mathematical Programming Problems leading to Optimal Hedging

Strategies and prices, which permits us to introduce new pricing

rules satisfying adequate properties and easy to compute in

practice.

The paper’s outline is as follows: Section 2 will present nota

tions and the basic conditions and properties of the initial pricing

rule p to be extended and the risk function q to be used. Since

the risk function is not differentiable in general, the optimization

problem giving the optimal hedging strategy and the pricing rule

extension is not differentiable either, and Section 3 will be devoted

to overcome this caveat. Actually, the minimization of risk
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functions may be very complicated in practice, as pointed out by

Rockafellar et al. (2006b) and Ruszczynski and Shapiro (2006),

among others. Thus, a major objective of this paper is to yield nec

essary and sufficient optimality conditions that will allow us to

solve the minimization problem we have to deal with in order to

price and hedge new assets.

We will use Representation Theorems of Risk Measures so as to

transform the initial optimal hedging problem in a minimax prob

lem. Later, following an idea developed in Balbás et al. (forth

coming), the minimax problem is equivalent to a new convex

optimization problem in Banach spaces. In particular, the dual var

iable belongs to the set of probabilities on the Borel r algebra of

the sub gradient of q. Since this fact would provoke high degree

of complexity when dealing with the optimality conditions of the

hedging problem, Theorem 2 is one of the most important results

in this section, because it guarantees that the optimal dual solution

will be a Dirac Delta, and thus we can leave the use of general

probability measures in order to characterize the optimal solu

tions. The section ends by proving its second important result. The

orem 4 yields simple necessary and sufficient optimality

conditions as well as guarantees the existence of Stochastic Dis

count Factors of p into the sub gradient of q.
Section 4 starts by introducing the extension pq of p. pq is given

by four equivalent expressions. The first expression is generated by

the dual problem, while the remaining ones are related to the pri

mal. Theorem 7 shows the interesting properties of pq, that is con

vex, continuous, and bounded by p and q. Furthermore, pq is a

genuine extension of p if the initial market is free of frictions,

and reduces the transaction costs caused by p otherwise. We have

proved the theorem by using the dual expression of pq. However, it

may be worth to remark that the proof may also be constructed by

using the primal expressions, i.e., the duality theory of Section 3

does not have to be used to establish Theorem 7.

Theorem 9 states that the Stochastic Discount Factors of p and

pq that belong to the sub gradient of q coincide, which enables us

to prevent the existence of arbitrage opportunities for pq in Corol

lary 10. The section ends by proving that pq outperforms the clas

sical extension of pricing rules in incomplete (and maybe

imperfect) markets if q is coherent.

Section 5 considers a General Deviation Measure and focuses on

this particular case. Special attention is paid to the Standard Devi

ation, since it is often used in finance to extend pricing rules (see

Schweizer, 1995, or Luenberger, 2001, among others). Some rela

tionships between the proposed extension and other classical ones

are analyzed. Section 6 deals with the CVaR, since it is becoming a

very popular Coherent and Expectation Bounded Risk Measure that

respects the second order Stochastic Dominance (Ogryczak and

Ruszczynski, 2002) and has been used by several authors in differ

ent types of Portfolio Choice Problems. Theorem 13 characterizes

the proposed extension in this special case and its Corollary 14 fo

cuses on some particular situations.

Section 7 attempts to summarize how pq may perform in some

practical situations. Illustrative numerical examples are yielded,

and applications to price volatility linked derivatives are discussed.

The last section of the paper points out the most important

conclusions.

2. Preliminaries and notations

Consider the probability space ðX;F;lÞ composed of the set of

‘‘states of the world” X, the r algebra F and the probability mea

sure l. Consider also a couple of conjugate numbers p 2 ½1;1Þ and
q 2 ð1;1� (i.e., 1=pþ 1=q 1). As usual Lp ðLqÞ denotes the Banach

space of R valued measurable functions y on X such that

EðjyjpÞ < 1, EðÞ representing the mathematical expectation

(EðjyjqÞ < 1, or y essentially bounded if q 1). According to the

Riesz Representation Theorem, we have that Lq is the dual space

of Lp.

Consider a time interval [0,T], a subset T � ½0; T� of trading

dates containing 0 and T, and a filtration ðFtÞt2T providing the ar

rival of information and such thatF0 f;;Xg andFT F. In gen

eral, ðStÞt2T will denote an adapted stochastic price process.

Let us assume that Y � Lp is a convex cone composed of super

replicable pay offs, i.e., for every y 2 Y there exists at least one self

financing portfolio whose final pay off is ST P y. Denote by SðyÞ
the family of such self financing portfolios, and suppose that there

exists

pðyÞ InffS0; ðStÞt2T 2 SðyÞg ð1Þ

for every y 2 Y . We will say that pðyÞ is the price of y. The market

will be said to be complete if for every y 2 Lp there exists

ðStÞt2T 2 SðyÞ such that ST y, and incomplete otherwise. Besides,

the market will be said to be perfect if Y is a subspace of Lp and

p : Y ! R is linear, and imperfect otherwise. In general, we will im

pose the natural conditions, sub additivity

pðy1 þ y2Þ 6 pðy1Þ þ pðy2Þ ð2Þ
for every y1; y2 2 Y , and positive homogeneity

pðayÞ apðyÞ ð3Þ
for every y 2 Y and aP 0. Consequently, p is a convex function. Fi

nally, we will assume the existence of a riskless asset that does not

generate any friction, i.e., almost surely constant random variables

y k belong to Y for every k 2 R, and there exists a risk free rate

rf P 0 such that

pðkÞ ke
rf T ; ð4Þ

holds. It is easy to see that (4) leads to

pðyþ kÞ pðyÞ þ ke
rf T ð5Þ

for every y 2 Y and k 2 R. Indeedpðyþ kÞ 6 pðyÞ þ ke
rf T is clear, and

pðyÞ pðyþ k kÞ 6 pðyþ kÞ þ pð kÞ pðyþ kÞ ke
rf T

implies the opposite inequality.

Though it is not formally needed, previous literature often uses

a finite or at best countable set of states X for static or discrete

time dynamic models (see for instance Duffie, 1996), since the

mathematical exposition is significantly simplified. The simplifica

tion is not feasible if continuous time pricing models are involved.

WhenX is finite then Lp and Lq will be R
n, n denoting the cardi

nal ofX. Thus, the completeness of the market holds if every vector

(final pay off) in R
n may be replicated by combining the available

assets. If the model is also static (T f0; Tg, i.e., there are only two

trading dates) then the completeness of the market holds if and

only if the number of independent assets equals n. An interesting

interpretation is discussed, for instance, in Tapiero (2004), where

it is said that the market is incomplete if the number of assets that

make up a portfolio is less than the market risk sources (plus one if

we do not use the risk free asset in the portfolio). As already said,

this framework simplifies the degree of mathematics in the analy

sis, although it does not apply for many very important financial

models (the Black and Scholes model, for instance).

From a financial perspective, an imperfect market is one in

which market participants do not have full access to information

about the securities and in which buyers are not immediately

matched with sellers. The most important mathematical conse

quence is that the pricing rule of the market is not linear any more.

The approaches by Lakner (1998) and Grorud and Pontier (2001),

among others, provide a theoretical framework for thinking about

imperfect markets.
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Let

q : Lp ! R

be the general risk function that a trader uses in order to control the

risk level of his final wealth at T. Denote by

Dq fz 2 Lq; EðyzÞ 6 qðyÞ; 8y 2 Lpg: ð6Þ

The set Dq is obviously convex. We will assume that Dq is also

rðLq; LpÞ compact and

qðyÞ Maxf EðyzÞ : z 2 Dqg; ð7Þ
holds for every y 2 Lp. Furthermore, we will also impose

Dq � fz 2 Lq;EðzÞ 1g: ð8Þ
These are quite natural assumptions closely related to the Repre

sentation Theorems of Risk Measures stated in Rockafellar et al.

(2006a). Following their ideas, and bearing in mind the Representa

tion Theorem 2.4.9 in Zalinescu (2002) for convex functions, it is

easy to prove that the rðLq; LpÞ compactness of Dq and the fulfill

ment of (7) and (8) hold if q is continuous and satisfies:

(a)

qðyþ kÞ qðyÞ k ð9Þ
for every y 2 Lp and k 2 R.

(b)

qðayÞ aqðyÞ ð10Þ
for every y 2 Lp and a > 0.

(c)

qðy1 þ y2Þ 6 qðy1Þ þ qðy2Þ ð11Þ
for every y1; y2 2 Lp.

(d)

qðyÞP EðyÞ ð12Þ
for every y 2 Lp.1,2

It is easy to see that if q is continuous and satisfies Properties (a) (d)

above then it is also coherent in the sense of Artzner et al. (1999) if

and only if

Dq � Lqþ fz 2 Lq;lðzP 0Þ 1g: ð13Þ

Particular interesting examples are the Conditional Value at Risk

(CVaR) of Rockafellar et al. (2006a), the Dual Power Transform

(DPT) of Wang (2000) and the Wang Measure (Wang, 2000), among

many others. Furthermore, following the original idea of Rockafellar

et al. (2006a) to identify their Expectation Bounded Risk Measures

and their Deviation Measures, it is easy to see that

qðyÞ rðyÞ EðyÞ ð14Þ
is continuous and satisfies (a) (d) if r : Lp ! R is a continuous (or

lower semi continuous) deviation, that is, if r satisfies (b) and (c),

(e)

rðyþ kÞ rðyÞ ð15Þ
for every y 2 Lp and k 2 R, and

(f)

rðyÞP 0 ð16Þ
for every y 2 Lp.

Particular examples are the p deviation given by rðyÞ
½EðjEðyÞ yjpÞ�1=p, or the downside p semi deviation given by

rðyÞ ½EðjMaxfEðyÞ y;0gjpÞ�1=p, among many others.

Denote by g 2 Lp a new pay off that we are interested in pricing

and hedging. If the trader sells g for Pe rf T dollars and buys y 2 Y in

order to hedge the global position, then he will choose x ðP; yÞ so
as to solve

Minqðy gÞ þ P;

pðyÞ 6 Pe rf T ;

P 2 R; y 2 Y :

8

>

<

>

:

ð17Þ

If ðP0; y0Þ solves (17) then

ðqðy0 gÞ þ P0Þe rf T ð18Þ
will be the (ask) price of g, composed of the cost of the hedging

strategy P0e
rf T plus the initial capital requirement qðy0 gÞe rf T

that the trader should provide.

The ask price (18) does not consider any utility function. On

the contrary, it only focuses on the capital needed by the trader

(the seller). Nevertheless, there are many relationships between

utility functions and risk functions, as pointed out by Ogryczak

and Ruszczynski (1999, 2002), and Biagini and Fritelli (2005),

among others. In Section 7 we will also present some comments

about it.

If we fix an arbitrary P 2 R then there is only one decision

variable y 2 Y in (17). Henceforth this simplified problem will be

denoted by (17 P).

3. Optimal hedging: primal and dual problems and optimality

conditions

In general q will be non differentiable and therefore so will be

Problems (17) and (17 P). To overcome this caveat we follow the

method proposed in Balbás et al. (2009). So, bearing in mind (7),

Problem (17 P) is equivalent to

Minhþ P;

hþ EðyzÞ EðgzÞP 0; 8z 2 Dq;

pðyÞ 6 Pe rf T ;

h 2 R; y 2 Y

8

>

>

>

<

>

>

>

:

ð19Þ

in the sense that y solves (17 P) if and only if there exists h 2 R such

that ðh; yÞ solves (19), in which case

h qðy gÞ
holds. Notice that the objective of (19) is differentiable and even lin

ear. The first constraint is valued on the Banach space CðDqÞ of real
valued and continuous functions on the ðweak

�Þ compact space Dq.

Since its dual space is MðDqÞ, the space of inner regular real valued

r additive measures on the Borel r algebra of Dq (endowed with

the weak
�
topology), the Lagrangian function

L : R� Y � R�MðDqÞ ! R

becomes

Lðh; y; k; mÞ h 1

Z

Dq

dmðzÞ
 !

Z

Dq

EðyzÞdmðzÞ

þ
Z

Dq

EðzgÞdmðzÞ þ kpðyÞ kPe rf T :

Following Luenberger (1969) the element ðk; mÞ 2 R�MðDqÞ is dual
feasible if and only if it belongs to the non negative cone

Rþ �MþðDqÞ and
Inf fLðh; y; k; mÞ : h 2 R; y 2 Yg > 1

1 Actually, the properties above are almost similar to those used by Rockafellar

et al. (2006a) in order to introduce their Expectation Bounded Risk Measures. These

authors also impose (a)–(d), work with p 2, allow for qðyÞ 1, and impose

qðyÞ > ÿEðyÞ if y is not constant.
2 According to Theorem 2.2.20 in Zalinescu (2002), if q satisfies (a)–(d) then q is

continuous if and only if q is lower semi-continuous.
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in which case the infimum above equals the dual objective on ðk; mÞ.
Hence, bearing in mind (2) and (3), the dual problem of (19)

becomes

Max
R

Dq
EðgzÞdmðzÞ þ Pð1 ke rf TÞ;

kpðyÞ
R

Dq
EðyzÞdmðzÞP 0; 8y 2 Y ;

k 2 Rþ; m 2 PðDqÞ;

8

>

>

<

>

>

:

ð20Þ

PðDqÞ denoting the set composed of those elements in MðDqÞ that
are probabilities.

PðDqÞ is convex, and the theorem of Alaoglu easily leads to the

compactness of PðDqÞ when endowed with the rðMðDqÞ;CðDqÞÞ
topology (Luenberger, 1969). Besides, given z 2 Dq we will denote

by dz 2 PðDqÞ the usual Dirac delta that concentrates the mass on

{z}, i.e., dzðfzgÞ 1 and dzðDq n fzgÞ 0. It is known that the set

of extreme points of PðDqÞ is given by

extðPðDqÞÞ fdz; z 2 Dqg; ð21Þ

though we will not have to draw on this result. The optimal value of

dual problems in the finite dimensional case is attained in a ex

treme feasible solution, which, along with (21), suggest that the

solution of (20) could be achieved in fdz; z 2 Dqg. Let us show that

this conjecture is correct. First we provide an instrumental lemma

whose statement and complete proof may be found in Balbás et al.

(forthcoming).

Lemma 1 (Mean Value Theorem). Let m 2 PðDqÞ. Then there exists

zm 2 Dq such that
Z

Dq

EðyzÞdmðzÞ EðyzmÞ ð22Þ

holds for every y 2 Lp.

Theorem 2. If ðk; mÞ 2 Rþ �PðDqÞ solves (20) then there exists

z 2 Dq such that ðk; dzÞ solves (20).

Proof. Consider ðk; mÞ solving (20) and take zm 2 Dq satisfying (22).

Then, for every y 2 Y we have that

0 6 kpðyÞ
Z

Dq

EðyzÞdmðzÞ kpðyÞ EðyzmÞ

kpðyÞ
Z

Dq

EðyzÞddzm ðzÞ;

and

Pð1 ke rf TÞ þ
Z

Dq

EðgzÞdmðzÞ kP EðgzmÞ

Pð1 ke rf TÞ þ
Z

Dq

EðgzÞddzm ðzÞ;

which proves that ðk; dzm Þ is (20) feasible and the objective values of

(20) in ðk; mÞ and ðk; dzm Þ are identical. h

Remark 1. The latter theorem leads to significant consequences. In

particular, we can consider the alternative and far simpler dual

problem

MaxEðgzÞ þ Pð1 ke rf TÞ;
kpðyÞ EðyzÞP 0; 8y 2 Y;

z 2 Dq; k 2 Rþ;

8

>

<

>

:

ð23Þ

where z 2 Dq is playing the role of m 2 PðDqÞ. h

Proposition 3. Let be z 2 Dq. The inequality kpðyÞ EðyzÞP 0 for

every y 2 Y can only hold for k erf T .

Proof. Indeed, the inequality leads to ke rf T EðzÞP 0 if y 1, and

ke rf T EðzÞ 6 0 if y 1, so the conclusion is obvious because

EðzÞ 1 for every z 2 Dq (see (8)). h

Remark 2. The previous proposition enables us to simplify (23)

once again. The equivalent problem will be

MaxEðgzÞ;
pðyÞerf T EðyzÞP 0; 8y 2 Y ;

z 2 Dq;

8

>

<

>

:

ð24Þ

where the k variable has been removed.

Notice that (4) implies that (17 P) is feasible, and therefore so is

(19). Since we are dealing with infinite dimensional Banach spaces

the so called ‘‘duality gap” between (19) and (24) might arise.3 To

prevent this pathological situation we will give the next theorem

and impose a very weak assumption with clear economic interpreta

tion. We will also connect the statement (b) of the theorem below

with classical key notions in Asset Pricing Theory.

Theorem 4. The three following conditions are equivalent:

(a) There exist P0 2 R and g0 2 Lp such that (19) is not unbounded,

i.e., there are no sequences ðynÞ � Y of feasible solutions such

that qðyn g0Þ ! 1.

(b) The (24) feasible set

Df fz 2 Dq;pðyÞerf T EðyzÞP 0;8y 2 Yg ð25Þ

is non void.

(c) Problem (19) is not unbounded for every P 2 R and g 2 Lp. Fur

thermore, in the affirmative case (19) and (24) are feasible and

bounded, (24) attains its optimal value, the dual maximum

equals the primal infimum, and the following Karush Kuhn

Tucker conditions

h� þ Eðy�z�Þ Eðgz�Þ 0;

h� þ Eðy�zÞ EðgzÞP 0; 8z 2 Dq;

pðy�Þ Pe rf T 0;

pðy�Þerf T Eðy�z�Þ 0;

pðyÞerf T Eðyz�ÞP 0; 8y 2 Y

h 2 R; y� 2 Y ; z� 2 Dq;

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð26Þ

are necessary and sufficient so as to guarantee that ðh�; y�Þ and
z� solve (19) and (24) respectively.

Proof

(a))(b) Suppose that we prove the fulfillment of the Slater Qual

ification for (19) (Luenberger, 1969), i.e., the existence of

ðh0; y0Þ 2 R� Y such that

h0 þ Eðy0zÞ Eðg0zÞ > 0; 8z 2 Dq;

pðy0Þ < P0

�

holds. Then Condition (a) implies that (20) (and therefore

(24)) must be feasible (Luenberger, 1969).In order to

show the fulfillment of the Slater Qualification notice that

(4) implies that (17) is always feasible, and therefore so is

(19). Moreover, given a (19) feasible solution ðh; yÞ, and
bearing in mind (8), the element ðh0; y0Þ ðhþ 2; y 1Þ
satisfies the primal constraints as strict inequalities.

3 If we only deal with a finite set of states X then, as already said, Lp has a finite

dimension, but the duality gap may also exist unless the market is perfect and

therefore the pricing rule p is linear (Luenberger, 1969).
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(b))(c) If Df is not empty then (24) is feasible and therefore so is

(20). Thus (19) cannot be unbounded because it is easy to

verify that the primal objective is never lower than the

dual one (see also Luenberger (1969)).

ðcÞ ) ðaÞ Obvious.Moreover, in the affirmative case (26) provides

sufficient optimality conditions because (19) is a convex

problem, and these conditions are also necessary

because, as shown in the implication ðaÞ ) ðbÞ, the Slater

Qualification holds (Luenberger, 1969). Finally, this Qual

ification also implies that the dual maximum is attained

and equals the primal infimum. h

Assumption 1. Hereafter we will assume the existence of P0 2 R

and g0 2 Lp such that (19) is not unbounded. Thus, Conditions (b)

and (c) in the theorem above also hold.

Remark 3 (Example illustrating that the fulfillment of Assumption 1

is not guaranteed.4). Consider X fx1x2g, lðx1Þ 0:1,

lðx2Þ 0:9, and

pðað1;1Þ þ bð1; 0ÞÞ aþ 0:7b; if bP 0;

aþ 0:4b; if b < 0:

�

:

The example indicates that the risk free rate vanishes and the risky

asset with pay off (1,0) has a bid price equal to 0.4 and an ask price

equal to 0.7. Suppose that

Dq fðz1; z2Þ; 0:1z1 þ 0:9z2 1 and 0 6 zi 6 2:5; i 1;2g:

It will be seen in Section 6 that Dq corresponds to the Conditional

Value at Risk with 0:6 60% as the level of confidence. The condi

tions defining the set Df are

0:4 6 0:1z1 6 0:7

0:1z1 þ 0:9z2 1

0 6 zi 6 2:5; i 1;2;

8

>

<

>

:

and therefore Df is void.

Remark 4. Since Condition (b) holds Df (see (25)) is not empty,

and its elements will be called ‘‘Stochastic Discount Factors (SDF)

of ðp;qÞ”. Notice that

EðyzÞ pðyÞerf T ð27Þ
holds for every y 2 Y and every z 2 Df if the market is perfect, since

y 2 Y for every y 2 Y and consequently

pðyÞerf T þ EðyzÞ pð yÞerf T Eð yzÞP 0

must also hold.5

Expression (27) leads to

pðyÞ e rf TEðyzÞ e rf TElz
ðyÞ; ð28Þ

i.e., the current price of any asset equals the present value of its ex

pected pay off once modified with the ‘‘distortion variable” z, or the

present value of its expected pay off if the expectation is computed

with the ‘‘risk neutral probability measure” lz such that

z
dlz

dl
:

Eq. (28) is closely related to the First Fundamental Theorem of Asset

Pricing. Notice that lz is actually a probability owing to (8), and will

be equivalent to l as long as

lðz > 0Þ 1:

See Duffie (1996) or De Wagenaere and Wakker (2001), among

many others, for further details about the Fundamental Theorem

of Asset Pricing and risk neutral or martingale measures in both

perfect and imperfect markets.

4. Pricing rules

This section will be devoted to extend the pricing rule p to the

whole space Lp. First we present a proposition without proof, since

it is trivial. One only must bear in mind that (24) does not depend

on P.

Proposition 5. The optimal value of (17) equals the optimal value of

(19) and (17 P) for every P 2 R. It also equals the optimal value of

(24).

As a consequence of the previous proposition we can introduce

the first pricing rule we are going to deal with. Indeed, we will

define

pqðgÞ e rf TMaxfEðgzÞ; z 2 Dq and pðyÞerf T EðyzÞP 0; 8y 2 Yg
ð29Þ

for every g 2 Lp. Obviously, given g 2 Lp, the latter proposition also

shows that

pqðgÞ e rf T Inf fqðy gÞ þ P; pðyÞ 6 Pe rf T ; P 2 R; y 2 Yg; ð30Þ
pqðgÞ e rf T Inf fqðy gÞ þ P; pðyÞ 6 Pe rf T ; y 2 Yg ð31Þ

for every fixed P 2 R, and

pqðgÞ e rf T Inf fqðy gÞ; pðyÞ 6 0; y 2 Yg: ð32Þ

Next let us see that the independence of pq and the solution of (24)

with respect to P, obvious consequence of the form of (24), is also

fulfilled by the optimal hedging portfolios, i.e., by the solution of

(19).

Proposition 6. Suppose that ðh�; y�Þ solves (19) for P 2 R and g 2 Lp.

Then ðh� a; y� þ aÞ solves (19) for P þ a 2 R and g 2 Lp.6

Proof. The proof is quite easy and consequently we will simplify

the exposition. Just consider a dual solution z�, that does not

depend on P as pointed out by (24), and bear in mind that ðh�; y�Þ
and z� satisfy (26) for ðP; gÞ. Then use (5) and (8) so as to verify that

ðh� a; y� þ aÞ and z� satisfy (26) for ðP þ a; gÞ. h

Next let us present the interesting properties of the extension

pq above. It conserves the properties of p, reduces the bid ask

spread and is a genuine extension of p if we deal with a perfect

market.

4 The existence of duality gaps and the lack of primal solutions or Lagrange or

Karush–Kuhn–Tucker multipliers is not so rare in financial problems. See for instance

Jim et al. (2008) for noteworthy counter-examples in portfolio selection.
5 Actually, many authors only use the term ‘‘Stochastic Discount Factor” if p 2,

(27) holds and zmay be replicated. In such a case, the existence and uniqueness of z in

an arbitrage free market may be proved. Furthermore, z is closely related to the

‘‘Market Portfolio” that allows us to measure the systematic risk of every asset, and to

establish the classical relationship between the expected asset return and its

systematic risk, i.e., the classical expressions of the Capital Asset Pricing Model

(Duffie, 1996 or Cochrane, 2001). In this paper we use the term ‘‘Stochastic Discount

Factor” in less restrictive sense. It is sufficient the fulfillment of z 2 Dq and

pðyÞerf T EðyzÞP 0; 8y 2 Y 6 Notice that this fact simplifies (26), in the sense that the equation pðy�Þ Pe rf T

may be removed.
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Theorem 7

(A) pqðgÞ 6 qð gÞe rf T for every g 2 Lp.

(B) pq is sub additive and positively homogeneous (and therefore

convex).

(C) pq is continuous.

(D) pqðyÞ 6 pðyÞ for every y 2 Y .7

(E) If g and g belong to Y and pð gÞ pðgÞ then pqðgÞ pðgÞ.
In particular, pqðkÞ ke

rf T for every k 2 R. If the market is

perfect then pq extends p to the whole space Lp.

(F) If q is a coherent risk measure then pq is increasing.8

Proof

(A) (32) implies that

pqðgÞ e rf T Inf fqðy gÞe rf T ;pðyÞ 6 0; y 2 Yg:

Hence, for y 0, pqðgÞ 6 qð gÞe rf T .

(B) (29) shows that

pq g1 þ g2ð Þ MaxfEððg1 þ g2ÞzÞe rf T ; z 2 Df g:

If zg1þg2 2 Df denotes the dual feasible solution where the

maximum is attained, then

pqðg1 þ g2Þ Eððg1 þ g2Þzg1þg2 Þe rf T

Eððg1Þzg1þg2 Þe rf T þ Eððg2Þzg1þg2 Þe rf T :

If zg1 2 Df and zg2 2 Df are the obvious, bearing in mind that

Df does not depend on g (see (25)) we have

Eððg1Þzg1þg2 Þe rf T þ Eððg2Þzg1þg2 Þe rf T

6 Eðg1zg1 Þe rf T þ Eðg2zg2 Þe rf T pqðg1Þ þ pqðg2Þ:

On the other hand, if a > 0 we have

pqðagÞ EðagzagÞe rf T aEðgzagÞe rf T 6 aEðgzgÞe rf T

apqðgÞ:

Analogously,

pqðgÞ pq
1

a
ag

� �

6
1

a
pqðagÞ

leads to apqðgÞ 6 pqðagÞ. For a 0 we only have to prove

that pqð0Þ 0, but this equality is clear because otherwise

pqð0Þ pqð2� 0Þ 2pqð0Þ

would lead to the contradiction 1 2.

(C) Being pq a convex function on Lp it is sufficient to see that pq

is continuous at g 0 (Luenberger, 1969). Since q is contin

uous,9 given e > 0 there exists d > 0 such that

kgk 6 d ) qð gÞ 6 eerf T and therefore pqðgÞ 6 e follows from

Statement A). Besides, bearing in mind B) we have that

pqðgÞ 6 pq gð Þ 6 e

because k gk 6 d. Hence, jpqðgÞj 6 e.
(D) If y 2 Y with the notations above we have

pqðyÞ EðyzyÞe rf T , and EðyzyÞ 6 pðyÞerf T because zy 2 Df .

(E) The assumptions lead to

pðgÞ þ pð gÞ 0;

so (33) implies that

pqðgÞ þ pqð gÞ pðgÞ þ p gð Þ 0:

Since Theorem 7D shows that pqðgÞ 6 pðgÞ and

pqð gÞ 6 pð gÞ the equality above can only hold if both

inequalities become equalities.

(F) If g1 6 g2 2 Lp then y g1 P y g2 and therefore

qðy g1Þ 6 qðy g2Þ for every y 2 Y because q is coherent

and therefore decreasing. Consequently,

Inffqðy g1Þ; y 2 Y ;pðyÞ 6 0g 6 Inffqðy g2Þ; y 2 Y ;pðyÞ
6 0g;

so the conclusion trivially holds. h

For imperfect markets pq may strictly reduce the spread, and

consequently it does not necessarily equal p on Y. Next let us char

acterize the equality pðgÞ pqðgÞ and provide a very simple

numerical example.

Proposition 8. Consider g 2 Y and a dual solution z�. pðgÞ pqðgÞ
holds if and only if Eðz�gÞ pðgÞerf T .

Proof. The result trivially follows from

pqðgÞ Eðz�gÞe rf T : �

Remark 5. Example illustrating that pqðgÞ < pðgÞ may hold. Con

sider the same example (market) as in Remark 3 but suppose that

Dq fðz1; z2Þ; 0:1z1 þ 0:9z2 1 and 0 6 zi 6 5; i 1;2g:

It will be seen in Section 6 that Dq corresponds to the Conditional

Value at Risk with 0:8 80% as the level of confidence. pqð1;0Þ is
the optimal value of

Max 0:1z1;

0:4 6 0:1z1 6 0:7;

0:1z1 þ 0:9z2 1;

0 6 zi 6 5; i 1;2:

8

>

>

>

<

>

>

>

:

Obviously, pqð1;0Þ 0:5 < 0:7 pð1;0Þ.

Since pq reduces the spread and satisfies the same properties as

p (Theorem 7), one could use pq to generate a new pricing rule p�
q

by applying the same method used to construct pq from p. Next we

will prove that p�
q pq, so it is useless to extend the pricing rule

two times. However, the equality p�
q pq shows that pq may be

an exact extension of p in particular situations, even if the market

is imperfect.

Theorem 9. The Stochastic Discount Factors of ðp;qÞ and ðpq;qÞ
coincide.10 Consequently,

7 Consequently pq ‘‘improves” the bid-ask spread (or the transaction costs) of p.
Indeed, if we consider that ÿpqðÿgÞ is the bid price of g 2 Lp and pqðgÞ is its ask price,

then Theorem 7B shows that

pqðgÞ þ pqð gÞP 0

i.e., the bid-ask spread cannot be negative. Analogously, (2) and (3) lead to

pðyÞ þ pðÿyÞP 0 for every y 2 Y such that ÿy 2 Y . Furthermore

pðyÞ þ pð yÞP pqðyÞ þ pqð yÞP 0; ð33Þ

i.e., the bid-ask spread is improved by pq .
8 Almost all the statements above are going to be proved by using (29) as the

expression generating pq . Nevertheless, all of them may be also proved by using (32),

i.e., the Duality Theory of Section 3 is not needed to prove Theorem 7.
9 Notice that the rðLq; LpÞ-compactness of Dq and the fulfillment of (7) and (8)

imply that q is continuous.

10 In other words: If z 2 Dq then

E yzð Þ 6 pðyÞerf T

for every y 2 Y if and only if

EðgzÞ 6 pqðgÞerf T

for every g 2 Lp .
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MaxfEðgzÞ; z 2 Dq; EðyzÞ 6 pðyÞerf T for every y 2 Yg
MaxfEðgzÞ; z 2 Dq; EðyzÞ 6 pqðyÞerf T for every y 2 Lpg
MaxfEðgzÞ; z 2 Dq; EðyzÞ 6 pqðyÞerf T for every y 2 Yg;

i.e., if we construct a new pricing rule p�
q from pq and q then p�

q pq.

Proof. If z 2 Dq and EðyzÞ 6 pqðyÞerf T for every y 2 Lp (or just for

every y 2 Y) then z 2 Df owing to Theorem 7D. Conversely, suppose

that z 2 Df and take y 2 Lp. Then pqðyÞerf T is the maximum value of

Eðyz0Þ with z0 2 Df , so EðyzÞ 6 pqðyÞerf T . h

A very important consequence of the latter theorem is that natural

assumptions on p prevent the existence of arbitrage for pq.

Corollary 10. Suppose that there exists z� 2 Df which is strictly

positive, i.e.,

Eðyz�Þ > 0

for every y 2 Lp such that yP 0 and y–0.11 Then pq does not generate

arbitrage opportunities, i.e., g P 0 and pqðgÞ 6 0 imply that g 0 and

pqðgÞ 0.12

Proof. Suppose that g P 0 and pqðgÞ 6 0. Then Eðgz�ÞP 0, with

equality if and only if g 0. Besides, the latter theorem implies

that

Eðgz�Þ 6 pqðgÞerf T 6 0;

so the equality holds. h

Finally, let us show that the proposed extension pq also ‘‘improves”

the ‘‘classical extension”, usual in incomplete markets. So, consider

g 2 Lp and the optimization problem

Min pðyÞ;
yP g;

y 2 Y;

8

>

<

>

:

and denotes by p�ðgÞ the infimum of the problem above (p�ðgÞ 1
if the problem is not feasible). Then we have:

Proposition 11. If q is coherent then p�ðgÞP pqðgÞ holds for every
g 2 Lp.

Proof. The conclusion is obvious if p�ðgÞ 1, so assume that

p�ðgÞ < 1. Take n 2 N and yn 2 Y , yn P g such that

p�ðgÞP pðynÞ
1

n
:

Then, yn P g and Theorems 7D and 7F lead to

p�ðgÞP pðynÞ
1

n
P pqðynÞ

1

n
P pqðgÞ

1

n
;

and the result trivially follows because n 2 N is arbitrary. h

5. Dealing with deviations

If we consider a general lower semi continuous deviation mea

sure r, i.e., a sub additive and homogeneous function satisfying

(15) and (16), then, as indicated in the second section, (14) estab

lishes a relationship between r and a risk measure q for which we

can construct the pricing rule pq, denoted by pr E in this section

owing to (14).

A particular interesting case, very used in finance, arises if p 2

and r r2 is the Standard Deviation given by

r2ðyÞ
Z

X

ðy EðyÞÞ2 dl
� �1=2

for every y 2 L2. In such a case L2 is a Hilbert space so, if one as

sumes that the market is perfect, Y is closed and p is continuous,

the Riesz Representation Theorem guarantees the existence of a un

ique y0 2 Y such that

pðyÞ Eðy0yÞ ð34Þ
holds for every y 2 Y . The literature has often proposed extensions

of p to the whole space L2 by considering an element y1 orthogonal

to Y and defining

py0þy1 ðyÞ E½ðy0 þ y1Þy�

for every y 2 L2.13 A particular interesting example arises if y1 0

since py0 becomes the composition of the orthogonal projection on

Y and p, or, in other words, py0 ðyÞ coincides with pðPðyÞÞ for every
y 2 L2, PðyÞ denoting the element in Y closest to y.

Obviously, the extensions above are specially useful when there

exists y1 orthogonal to Y and such that y0 þ y1 > 0 almost surely

(respectively, y0 > 0 almost surely) because this inequality guaran

tees the absence of arbitrage for the pricing rule py0þy1 (respec

tively, py0 ).

Actually, under the general assumptions above, as far as we

were able to analyze the problem there were no clear relationships

between the (non necessarily linear) extension pr2 E and the

extension py0þy1 . However, for those cases such that both exten

sions generate arbitrage free pricing rules (see Corollary 10)

pr2 E will be larger than py0þy1 .

Proposition 12. Suppose that the market is perfect, Y is closed and p
is continuous. Consider the unique y0 2 Y such that (34) holds for

every y 2 Y. Suppose finally that there exists z� 2 L2 such that

(a) Eðz�Þ 0, r2ðz�Þ 6 1 and 1þ z� > 0 almost surely.

(b) ð1þ z�Þe rf T y0 is orthogonal to Y.Then pr2 E and pð1þz�Þe rf T

do not generate arbitrage opportunities and

pr2 EðyÞP pð1þz�Þe rf T ðyÞ

holds for every y 2 L2.

Proof. It is shown in Rockafellar et al. (2006a) that

Dr2 E f1þ z; z 2 L2; EðzÞ 0 and r2ðzÞ 6 1g: ð35Þ

Hence Condition a) imposes that 1þ z� is strictly positive and be

longs to Dr2 E. Moreover, Condition b) leads to

Eðð1þ z�ÞyÞ Eðy0erf TyÞ erf TpðyÞ
for every y 2 Y , which implies that 1þ z� is in Df (see (25)). Conse

quently Corollary 10 implies that pr2 E does not generate arbitrage

opportunities. Similarly, 1þ z� > 0 almost surely leads to the ab

sence of arbitrage opportunities for pð1þz�Þe rf T . Finally, (29) and

(24) lead to

pr2 EðyÞ e rf TMax fEðyzÞ; z 2 Df gP e rf TEðð1þ z�ÞyÞ
pð1þz�Þe rf T ðyÞ

for every y 2 L2. h11 Or equivalently, z� > 0 almost surely.
12 Bearing in mind (13) with a similar proof one can see that if q is coherent then

Assumption 1 prevents the existence of the so called ‘‘strong” or ‘‘second type”

arbitrage (Jaschke and Küchler, 2001), i.e., the existence of g 2 Lp such that g P 0 and

pqðgÞ < 0. 13 See, among others, Schweizer (1995) and Luenberger (2001).
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Remark 6. A very particular case arises if ð1þ z�Þe rf T y0, i.e., if

pð1þz�Þe rf T is the composition of p and the orthogonal projection

P. This situation appears if y0 > 0 almost surely, Eðy0Þ e rf T and

r2ðy0Þ 6 e rf T , in which case pr2 E and py0 do not generate arbi

trage opportunities and pr2 E P py0 holds.

6. Using the Conditional Value at Risk

In this section, we will focus on the Conditional Value at Risk,

since it is becoming a very well known Coherent and Expectation

Bounded Risk Measure that respects the second order Stochastic

Dominance (Ogryczak and Ruszczynski, 2002). In particular, this

risk function has been used, amongst many others, by Wang

(2000) in some insurance linked problems, Alexander et al. (2006)

in portfolio choice problems involving derivatives, Mansini et al.

(2007) in portfolio choice problems involving bonds and shares,

or Balbás et al. (forthcoming) in optimal reinsurance problems.

If 0 < 1 l0 < 1 represents the level of confidence then the

CVaRl0
may be defined in L1 and Rockafellar et al. (2006a) showed

that

DCVaRl0
z 2 L1; 0 6 z 6

1

l0

and EðzÞ 1

� �

:

Suppose the same hypotheses as in the second section as well as

Assumption 1, i.e., the existence of P0 2 R and g0 2 L1 such that

(17 P) is bounded, i.e., the value of CVaRl0
ðyÞ cannot tend to 1.

According to Theorem 4 there are SDF of ðp;CVaRl0
Þ, i.e., Df is non

void.

The following result characterizes primal and dual solutions for

q CVaRl0
, as well as it allows us to compute the value pCVaRl0

ðgÞ
for g 2 L1 in practical applications.

Theorem 13. Consider g 2 L1 and suppose that (19) attains it optimal

value for g.14 Consider also z� 2 Df . Then, z
� solves (24) if and only if

there exist a partition

X X0 [X� [Xl0

of X composed of measurable sets and y� 2 Y such that:

(A) z� 0 on X0 and z� 1
l0

on Xl0
.

(B) y� 6 g on X0, y� g on X� and y� P g on Xl0
.

(C) Eðz�y�Þ pðy�Þerf T .
Furthermore, in the affirmative case we have that ðpðy�Þerf T ; y�Þ

solves (17) and

pCVaRl0
ðgÞ Eðz�gÞe rf T : ð36Þ

Proof. Fix P1 2 R and take ðh; y�Þ solving (19) for P1. If z� solves (24)

then (26) shows that C) must hold and z� must solve

MinEðy�zÞ EðgzÞ
EðzÞ 1

z 6 1
l0
;

z 6 0;

z 2 L1:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð37Þ

The Slater Qualification holds since z 1 belongs to DCVaRl0
and sat

isfies the two inequalities in strict terms. Then z� must satisfy the

optimality conditions. Bearing in mind that the dual space of L1 is

composed of l continuous finitely additive measures on F with

bounded variation, there exists a couple of non negative measures

ða1;a2Þ and a real number a such that

y� g aþ a1 a2;
R

X
z� 1

l0

� �

da1 0;
R

X
z� da2 0:

8

>

>

<

>

>

:

Denote by X0 the set where z� vanishes and by Xl0
the set where

z� 1
l0
. The second and the third condition, along with 0 6 z� 6 1

l0
,

lead to a1 0 out of Xl0
and a2 0 out of X0. Thus,

a1 y� g a on Xl0
and a2 y� þ g þ a on X0, which shows

that ai 2 L1, i 1;2.

If X� X n ðX0 [Xl0
Þ then A) is obvious and B) holds as long as

a 0. If a–0 then Proposition 6 guarantees that y� a solves (17

P)for P2 P1 a, so take this new value for the P variable and

rename y� a as y�.
It only remains to prove (36). According to (29), and bearing in

mind the objective function of (24),

pCVaRl0
ðgÞ Eðz�gÞe rf T ;

and (36) holds.

Conversely, suppose that the existence of the partition and

y� 2 Y is fulfilled. Take

a1 y� g on Xl0

a1 0 otherwise

�

and

a2 y� þ g on X0

a2 0 otherwise

�

and it is clear that z� satisfies the optimality conditions of (37). Since

this problem is linear z� is optimal. Hence

Eðy�zÞ EðgzÞP Eðy�z�Þ Eðgz�Þ
if z 2 DCVaRl0

leads to the fulfillment of the first and the second

expressions in (26) if h Eðgz�Þ Eðy�z�Þ.
Take P pðy�Þerf T so as to guarantee the fulfillment of the third

expression in (26). Then C) and z� 2 Df show that all the expres

sions in (26) hold and thus z� solves (24). h

Another particular interesting case arises if (37) attains ‘‘bang

bang” solutions. More accurately we have:

Corollary 14. Consider g 2 L1 and suppose that (19) attains it

optimal value for g. Consider z� 2 Df and suppose the existence of a

partition X X0 [Xl0
such that z� 0 on X0 and z� 1

l0
on Xl0

.

Then, z� solves (24) if and only there exists y� 2 Y such that:

(A) y� 6 g on X0 and y� P g on Xl0
.

(B) Eðz�y�Þ pðy�Þerf T .

Furthermore, in the affirmative case we have that ðpðy�Þerf T ; y�Þ solves
(17) and (36) holds. h

Notice that the corollary above may be easily applied in prac

tice. Indeed, on the one hand Eðz�Þ 1 leads to

lðXl0
Þ l0; ð38Þ

and Eðz�gÞ must be maximized on the other hand. Thus one must

look for those measurable subsets Xl0
satisfying (38) and making

g as large as possible, and then check the fulfillment of A) and B)

for some y� 2 Y .

7. Numerical examples and applications

This section will be devoted to illustrate how the pricing rule pq

may perform in practice when pricing a new security g. The two

most important aspects are the quality of the optimal hedging,

i.e., how good the hedging portfolio y� is so as to reduce the risk le

vel qðy� gÞ, and the properties of the risk measure q.
14 As in Proposition 6, if this property holds for a given P1 2 R then it also holds for

every P 2 R.
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With respect to the properties of the risk measure q there are

many interesting previous studies reflecting its degree of compat

ibility with the Second Order Stochastic Dominance (SOSD) and the

usual Utility Functions. For instance, Ogryczak and Ruszczynski

(1999) show, among many other properties, that the Standard

Deviation is not compatible with the SOSD if asymmetric returns

are involved. Other interesting contributions are, among many oth

ers, Ogryczak and Ruszczynski (2002), where the good properties

of the CVaR and other risk functions are proved, and Biagini and

Fritelli (2005), where relationships between risk functions and util

ity functions are given.

Since the properties of the risk functions have been broadly dis

cussed in previous literature, let us focus on the optimal risk level

qðy� gÞ that the trader must face if he sells g, y� being the solution

of (17 P) for P 0 (see also (32)). Obviously, the value of qðy� gÞ
will be closely related to the correlation level of g and those attain

able or super replicable pay offs y 2 Y . If there are elements y 2 Y

very correlated with g then the protection generated by y� will be

high, the price pqðgÞ will be ‘‘reasonable” and connected with the

market ðY ;pÞ, and the bid/ask spread pqðgÞ þ pqð gÞ will be low.

On the contrary, it the level of correlation between g and the ele

ments of Y remains close to zero, thenqðy� gÞwill be high, the pro

tection provided by y� will be scant, the (ask) price pqðgÞ will be

‘‘unrealistic” and high, and the bid/ask spread pqðgÞ þ pqð gÞ will

be large. The tradermust sell g for a ‘‘expensive price” due to the lack

of appropriate hedging portfolios. Only the bid/ask average value

1

2
pqðgÞ pqð gÞ
ÿ �

will reflect suitable levels.

In order to clarify the ideas above let us provide a couple of

examples. The first one is a simple numerical exercise pointing

out that low correlations provoke large spreads. In the next subsec

tion, we will show that closer relationships among the involved

securities lead to very interesting prices and spreads.

Consider two available securities, the risky asset and the risk

free one. The interest rate vanishes, whereas the risky asset current

price equals zero and its final pay off is a standard normal distribu

tion S. Suppose that a new asset arises in the market. Its final

pay off g is also a standard normal distribution, and S and g are

independent. Suppose also that a trader is interested in selling g

and he uses q r2 E. Then, bearing in mind (32),

pqðgÞ Min y21 þ 1
q

y0; y0 6 0; y1 2 R

� �

1:

Moreover, the solution (optimal hedging portfolio) is y0 y1 0.

It is clear that there are no reasons to pay one dollar for g if it is

similar to S and the price of S vanishes. But the trader cannot ade

quately hedge his position if he sells for zero dollars. Notice that

the optimal hedging strategy does not use S ðy1 0Þ, which implies

that S is useless if one wants to draw on it in order to hedge the sale

of g. The independence between S and g makes it impossible to re

duce the risk level of the sale of g by using S.15

Similarly, it is easy to see that pqð gÞ 1, i.e., the bid price of g

is pqð gÞ 1. Consequently, if the trader is interested in buy

ing g he will accept to pay 1 dollars. If he pays more his protec

tion is not guaranteed, since the final value of g could be very

negative, and he could lose a lot of money.

Summarizing, the null correlation between S and g provokes

real quotes of g given by ‘‘bid 1” and ‘‘ask 1”, and the huge

‘‘bid=ask spread 2”.16 Only the bid/ask average value vanishes,

and therefore it equals the price of S.

It is important to remark that there are no asymmetries or fat

tails involved in the example, so r2 E is a ‘‘good” measure of risk,

in the sense that it respects the SOSD (Ogryczak and Ruszczynski,

1999). However, r2 E is not coherent in the sense of Artzner

et al. (1999), since Dq, given by (35), does not satisfy (13). Actually

r2 E is not decreasing, which means that higher wealth does not

necessarily imply lower risk, and this might be a drawback in some

applications.

However, the huge spread above is not provoked by the risk

function we are using. Indeed, consider the same data but take

q CVaRl0
. Thus we are dealing with a Coherent and Expectation

Bounded risk measure that also respects the SOSD and the classical

Utility Functions (Ogryczak and Ruszczynski, 2002; Rockafellar

et al., 2006a; Mansini et al., 2007, etc.). Without loss of generality

we can consider that X ð0;1Þ2, l is the Lebesgue measure,

S N 1ðx1Þ and g N 1ðx2Þ,
N : R ! ð0;1Þ
being the cumulative distribution function

NðxÞ 1

2p
p

Z x

1
e

1
2
t2 dt

of the standard normal distribution. In order to compute pqðgÞ let
us apply Corollary 14. So, take X0 ð0;1Þ � ðl0;1Þ, Xl0

ð0;1Þ�
ð0;l0Þ, and

z�
0 ðx1;x2Þ 2 X0;

1=l0 ðx1;x2Þ 2 Xl0
:

�

y� is the constant (zero variance) random variable y� N 1ðl0Þ. It is
easy to see that z� 2 Df . Indeed, Eðz�Þ 1 is obvious, and

0 EðSÞ
Z 1

0

N 1ðx1Þdx1

leads to

Eðz�SÞ 1

l0

Z l0

0

Z 1

0

N 1ðx1Þdx1

� �

dx2 0:

To check the conditions of Corollary 14 it only remains to show that

y� 6 g on X0 and y� P g on Xl0
. If ðx1;x2Þ 2 X0 then x2 > l0,

which implies that N 1ðx2Þ > N 1ðl0Þ, i.e., g > y�. The other

inequality is analogous, and therefore ðpðy�Þ; y�Þ solves (17). Then,

since pðy�Þ y� (the risk free rate vanishes), (30) implies that

pqðgÞ CVaRl0
ðN 1ðl0Þ gÞ þ N 1ðl0Þ CVaRl0

ðgÞ:

Once again g is more expensive than S, despite they have the same

distribution. Moreover the optimal hedging strategy does not use

S. It is also possible to prove that pqð gÞ CVaRl0
ðgÞ, and thus the

bid/ask spread 2CVaRl0
ðgÞ is ‘‘too high” for a ‘‘realistic” value of the

level of confidence 1 l0. Only the bid/ask average value vanishes

and equals the price of S. We have parallel results for both the Stan

dard Deviation and the Conditional Value at Risk. Furthermore, if we

drew on (26) rather than Corollary 14 then we could show that the

properties of the example are very robust with respect to the risk

function q. We will not do that in order to shorten the exposition.

7.1. Pricing variance swaps

Let us analyze a second example reflecting a close relationship

between those securities in Y and the new asset g to be priced

and hedged. Variance and volatility linked derivatives are becom

ing very used in practice because they provide investors with

new ways to diversify their portfolios. Besides, they are useful

when facing market turmoils. Interesting studies may be found

in Demeterfi et al. (1999) and Broadie and Jain (2008), among

many others.

15 Recall that we are using risk functions that can be interpreted in monetary terms,

or as initial capital requirements.
16 It is easy to show that the spread becomes higher as the variance of g grows.
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Important particular cases are the variance and the volatility

swap. Mainly, agents fix the underlying asset and the period

[0,T]. At t 0 they buy (or sell) the realized variance (volatility)

for a given price W0. At t T they know the trajectory reflected

by the underlying asset, so they can compute the realized variance

(volatility) WT . If they bought then they will receive UðWT W0Þ
dollars (this quantity may be negative), U > 0 being a known

‘‘price per variance (volatility) point”.

There is a growing interest in new methods allowing us to price

and hedge these products. With respect to the variance swap

Demeterfi et al. (1999) used classical arbitrage arguments and

proved that the variance swap current price must equal the price

of the ‘‘log contract”, i.e., the price of the asset paying at T the

amount

gðXTÞ
U

T

XT

FT
0

1 L
XT

FT
0

 !" #

; ð39Þ

XT being the final (at T) underlying asset price, and FT
0 being the

price at t 0 of the forward contract with maturity at T. If X0 is

the current underlying asset price and there are no dividends in

the indicated period then FT
0 X0e

rf T , expression that must be

slightly modified when dividends are considered. The result of

Demeterfi et al. (1999) holds under quite general assumptions,

and does not depend on the underlying asset behavior. It applies

for the Black and Scholes model, for the Hestonmodel, and for many

other stochastic volatility models that do not reflect jumps in the

volatility. Since g is obviously two times differentiable, the final

pay off gðXTÞ may be replicated in a static framework. The replica

will incorporate infinitely many European options because we will

have to deal with all the strikes lying within the interval ð0;1Þ.
The number of options per strike depends on the second derivative

g00ðXTÞ, and Demeterfi et al. (1999) showed that (39) is replicated by

Purchasing
U

T

1

k
2
dk European Puts with strike k; 0 < k < FT

0;

Purchasing
U

T

1

k
2
dk European Calls with strike k; FT

0 < k < 1:

ð40Þ
The put/call parity points out that (39) may be also replicated with a

static strategy containing only puts or calls, along with the underly

ing asset (or the forward contract) and the riskless security.

The strategy above has significant advantages. It does not de

pend of the model for the underlying asset dynamic behavior, it

provides a hedging portfolio composed of European options, and

the price of the variance swap may be computed by using real mar

ket data rather than model linked parameters, since real quotes of

European options are usually available. However, there is a caveat

since it is impossible to buy ‘‘infinitely many options”. Thus, Deme

terfi et al. (1999) provided a pseudo replica that draws on the

available options, though they did not compute the quality of the

approximation.

The approach of Demeterfi et al. (1999) is extended in Broadie

and Jain (2008) (among others), where the authors use and mini

mize the Standard Deviation so as to measure the degree of

approximation between the variance swap and the strategy of (fi

nitely many) European options. Moreover, these authors extend

the discussion and show that the volatility swap may be also

priced and hedged by using infinitely many options, though in this

new case they must assume the Heston model to explain the

underlying asset evolution. Once again they use the standard devi

ation in order to hedge the volatility swap with the available (fi

nite) options.

The approach of Broadie and Jain (2008) is very interesting but

there are three ideas that may be considered. Firstly, the Standard

Deviation does not provide information in monetary terms, that

will be only given by r2 E. Secondly, and much more impor

tantly, the variance (volatility) swaps and calls and puts obviously

present asymmetric returns (and heavy tails) which implies that

the standard deviation is not compatible with the SOSD and the

usual utility functions. Thirdly, as said above, r2 E is not

coherent.

The theory developed in this paper may overcome the caveats

above, since one can use a risk function q reflecting capital require

ments,17 compatible with the SOSD, and coherent.18 Despite (17)

may be quite complex due to the absence of differentiability (see

Rockafellar et al., 2006b, and Ruszczynski and Shapiro, 2006), and

we have the same problem if we use (31) or (32), (26) provides nec

essary and sufficient optimality conditions that will apply. Moreover,

(24) will be often linear, which allows us to solve it by using several

algorithms even if we deal with continuous distributions and sets X

composed of infinitely many states (see Balbás et al., 2009). Obvi

ously, the enormous bid/ask spread of the example of the previous

subsection will not arise here, since (40) shows a close relationship

between the variance swap contract and the options, and therefore

there is a strong dependence between their behaviors.

Obviously, the valuation of volatility linked securities is beyond

the scope of this paper, which is in the realm of theoretical finance

and applications of optimization theory. Nevertheless, for illustra

tive reasons, we have checked a numerical example. For the sake of

simplicity let us assume that U T 1 and XT can only achieve an

integer value lying within the interval [1,10]. Thus X is composed

of those integersx such that 1 6 x 6 10. The probability l is given

by lðxÞ 0:1. There are six available securities, the riskless asset,

the underlying asset, and four European calls with maturity at

T 1 and strikes 3, 5, 7 and 9 respectively. The interest rate van

ishes and the market is risk neutral, that is, the underlying asset

price equals 5.5 and the option prices are 2.8, 1.5, 0.6 and 0.1

respectively. Then, if q CVaR0:34 and g is given by (39), we have

that (24) is a linear problem that may be easily solved by a simplex

method. Its solution provides the ask price of the variance swap

that equals 0.422. Besides, the solution of (24) if g replaces g pro

vides a bid price of g equal to 0.359. The bid/ask spread equals

0.063.

8. Conclusions

This paper has proposed a new method to extend pricing rules

in both incomplete and imperfect markets by using general risk

functions, with special focus on Expectation Bounded Risk Mea

sures and General Deviation Measures.

The pricing rule extension draws on a mathematical program

ming problem that takes the point of view of the trader and mini

mizes the cost of the hedging strategy plus the initial capital

requirement indicated by the selected risk function, i.e., we mini

mize the initial capital needed by the trader.

Since the minimization of risk functions may be a very compli

cated problem due to the lack of differentiability, the paper has

also presented a duality theory that solves this caveat for the opti

mization problem we have to deal with. Primal and dual solutions

have been characterized by practical conditions, as it has been

illustrated with numerical examples.

The proposed pricing rule presents some properties that may

deserve to be pointed out. Firstly, it is sub additive and homoge

neous. Secondly, it reduces the bid/ask spread if the initial market

reflects frictions, and it is a genuine extension of the initial pricing

rule otherwise. Thirdly, the proposed pricing rule prevents the

17 In this case it may be very useful to measure the committed error in monetary

terms (potential losses), since it is impossible to reach a perfect hedging with the

available options.
18 The CVaR satisfies these requirements, but it is not the only one.
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existence of arbitrage under weak assumptions about the initial

market.

Some special attention has been paid to the Expectation

Bounded Risk Measure generated by the Standard Deviation. Some

relationships with other pricing rule extensions presented in the

literature and related to the Standard Deviation have been also

analyzed.

The major findings of the paper have been particularized for the

Conditional Value at Risk (CVaR), since it is becoming a risk mea

sure very frequently used in Finance. Moreover, some applications

to price volatility linked derivatives have been discussed.

Most of the developed theory strongly depends on the duality

properties of the Convex Optimization Theory in Banach spaces,

so the paper points out once again how Mathematical Program

ming may play a crucial role in Asset Pricing and Hedging, two ma

jor topics in Finance.
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