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Compound Markov counting processes and their applications to modeling
infinitesimally over-dispersed systems
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Abstract

We propose an infinitesimal dispersion index for Markov counting processes. We show that, under standard moment
existence conditions, a process is infinitesimally (over-) equi-dispersed if, and only if, it is simple (compound), i.e.
it increases in jumps of one (or more) unit(s), even though infinitesimally equi-dispersed processes might be under-,
equi- or over-dispersed using previously studied indices. Compound processes arise, for example, when introducing
continuous-time white noise to the rates of simple processes resulting in Lévy-driven SDEs. We construct multivariate
infinitesimally over-dispersed compartment models and queuing networks, suitable for applications where moment
constraints inherent to simple processes do not hold.

Keywords: continuous time; counting Markov process; birth-death process; environmental stochasticity;
infinitesimal over-dispersion; simultaneous events

1. Introduction

Continuous-time stochastic processes are widely used as a modeling tool for studying dynamical systems in differ-
ent fields. Most continuous-time processes proposed in the literature belong to one of two large families: real-valued
processes which can be written as solutions to stochastic differential equations [24, 30] and discrete-valued processes
defined via counting processes [10, 35, 9] or Markov chains [5]. In this paper, we focus on the intersection be-
tween counting processes and Markov processes, namely Markov counting processes (MCPs from this point onward).
MCPs are building blocks for models which are heavily used in biology (in the context of compartment models) and
engineering (in the context of queues and queuing networks) as well as in many other fields.

A counting process is a continuous-time, non-decreasing, non-negative, integer-valued stochastic process. The
counting process is said to count events each of which has an associated event time. A counting process is simple
if, with probability one, there is no time at which two or more events occur simultaneously. A process which is not
simple is called compound. Simpleness is a convenient, and therefore widely adopted, property for both the theory
and applications of counting processes [10]. The Markov property is also a convenient and widespread property of
stochastic models. However, we will show that simple MCPs, combining these two attractive properties, have severe
limitations in terms of the range of possible relationships between their infinitesimal mean and variance. Previous
approaches to negotiate this difficulty have centered on sacrificing the Markov property rather than simpleness. How-
ever, there are theoretical and practical attractions to the alternative strategy of maintaining the Markov property while
allowing for simultaneous events. Investigating such models is the topic of this paper.

The ratio of the variance to the mean of a random variable is called its dispersion. Many well-known integer-
valued distributions have dispersion constraints. These constraints are often not reproduced in data from applications,
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the data typically having additional variance and therefore being termed over-dispersed [29]. The same issues arise
in integer-valued stochastic processes [7] and, as a result, there is a considerable literature devoted to extending oth-
erwise appealing models which are unable to reproduce observed variability. Typically, over-dispersion has been
studied via defining stochastic processes in which some parameters are themselves modeled as stochastic in order to
produce additional variability. This idea has been widely applied since the pioneering work of Greenwood and Yule
[19], which derived the over-dispersed negative binomial distribution as a mixture of the Poisson distribution with
a gamma-distributed parameter. Another early contribution is the Cox process [8], also known as doubly-stochastic
Poisson process [9, 35, 10]. Some recent work has considered stochastic parameters for continuous-time Markov
chains [12] and for non-Markovian processes [37]. Marion and Renshaw [28] and Varughese and Fatti [38] stud-
ied over-dispersion generated by standard birth-death processes with diffusion-driven rates, focusing on population
dynamics applications. Both [28] and [38] proposed a mean-reverting Ornstein-Uhlenbeck process for the driving
random environment. Compound counting processes have been studied in the literature on batch processes [31], but
we are not aware of a previous investigation of infinitesimal dispersion in this context. To our knowledge, the first
general class of infinitesimally over-dispersed MCPs was proposed by Bretó et al. [6]. They achieved over-dispersion
by introducing white noise to rates of a multivariate process constructed via simple death processes, which was shown
to result in the possibility of simultaneous events. The main goal of this paper is to generalize the model of [6] by
presenting a systematic investigation of over-dispersed models via compound MCPs. In particular, we define a class
of compound MCPs using Lévy-driven stochastic differential equations [2], by introducing continuous-time white
noise in the Kolmogorov equations for simple MCPs. The applications of MCPs are too diverse to cover systemati-
cally here. One example, which has been a motivation for our work [6], is the study of infectious disease dynamics.
Discrete-state Markov processes have proven useful models for studying many infectious disease transmission sys-
tems, and are central to current understanding of the spread of such diseases through populations [25]. However,
standard disease models are constructed via simple MCPs and therefore struggle to match the statistical properties
observed in data. Recent advances in statistical inference methodology [23, 1] have permitted fitting more general
models, based on compound MCPs, to data [6, 21]. At least in this context, the substantial scientific consequences of
adequately modeling over-dispersion in stochastic processes are consistent with the widely recognized importance of
over-dispersion for drawing correct inferences from integer-valued regression models [29].

As concrete examples of models defined by Lévy-driven Kolmogorov’s differential equations, we compute in-
finitesimal moments and transition rates for various specific novel models. The availability of transition rates makes
possible exact simulation, and exact methods are particularly appropriate when dealing with small counts, which arise
naturally in some applications. In infectious disease applications, for example, small counts arise at the start of an epi-
demic, which is a critical period for identifying and controlling the disease transmission. Exact simulation of MCPs
can be computationally demanding for processes with a very large number of events. In these cases, it is standard to
use approximations which are more affordable computationally but require some diagnostics to investigate the validity
of the approximation. To this end, both Euler-Maruyama time discretizations of MCPs and diffusion approximations
have been proposed in the literature [6, 21, 23, 26, 28, 38, 13]. Several algorithms have been proposed in which
two simulation methods are used, an exact one for small counts and a faster, approximate one for larger counts [20].
In order to use combined algorithms of this type, it is necessary to choose a diffusion approximation, given some
MCP. Diffusions are defined in a straightforward way in terms of infinitesimal moments. Requiring that the MCP
and the proposed diffusion approximation have common infinitesimal moments gives a natural approach for such an
approximation, giving further motivation for the study of infinitesimal moments of MCPs.

A second goal of this paper is to propose the use of an infinitesimal dispersion index for counting processes in
conjunction with standard indices. This provides a simple measure of dispersion, combining attractive theoretical
properties with scientific interpretability, which is desirable when considering candidate processes for applications.
Markov processes specified as the solution to stochastic differential equations are naturally characterized by their
infinitesimal mean and variance [24]. However, these infinitesimal moments have not been studied in the context
of counting processes, perhaps because, as we will show, in the case of simple MCPs the infinitesimal variance is
constrained to be equal to the infinitesimal mean. Instead, interest has focused on dispersion properties of increments
of counting processes over fixed time windows, which we call integrated dispersion to distinguish it from infinitesimal
dispersion. The study of integrally over-dispersed counting processes has a long history, going back at least to the
start of the twentieth century [36] and continuing up to the present [e.g., 3]. Integrated dispersion has undoubtedly
an interest of its own, in particular if the integration window is chosen according to some specific criterion (possibly
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motivated in applications by scientific evidence). Because of this window dependence, integrated dispersion may
give a distorted representation of a process, in the same way that discretizing a continuous-time process at different
resolutions might give very different pictures. In particular, we show that all of integrated over-, equi- and under-
dispersion may occur for infinitesimally equi-dispersed processes. By contrast, infinitesimal dispersion provides an
intuitive and theoretically attractive measure which has already proven its worth in the study of real-valued Markov
processes.

In Section 2 we investigate the infinitesimal moments of simple and compound MCPs, and compare them with
previously studied measures of integrated dispersion. Then, in Section 3 we propose several novel over-dispersed
compound MCPs. Section 4 demonstrates an application of these MCPs to construct infinitesimally over-dispersed
models of disease transmission, motivating the investigation of a general multivariate framework developed further in
Appendix D.

2. Dispersion of Markov counting processes

One can study dispersion in the context of non-Markovian processes, but several considerations have led us to
focus on the Markov case here. Firstly, there is less room for debate over the definition of appropriate measures of
dispersion for Markov processes. Secondly, the extensively studied theory of Markov chains [5] allows us to avoid
explicitly discussing measure-theoretic issues while being guaranteed that there are no difficulties concerning the
existence and construction of the processes in question. Thirdly, our later goal of studying over-dispersed Markov
counting processes clearly does not necessitate a complete investigation of non-Markovian possibilities.

Let {N(t) : t ∈ R+} be a time homogeneous Markov counting process, which we will refer to as {N(t)}. Defining
∆N(t) = N(t + h) − N(t), the transition rates are written as

q(n, k) ≡ lim
h↓0

P(∆N(t) = k|N(t) = n)
h

(1)

where t, h ∈ R+ and k, n ∈ N with k ≥ 1. The rate of leaving state n or (infinitesimal) rate function is written as

λ(n) ≡ lim
h↓0

1 − P(∆N(t) = 0|N(t) = n)
h

.

In the Markov Chain literature, the transition rates are also known as the local characteristics of the transition semi-
group [5]. In the point process literature, λ(n) is the intensity of the process and q(n, k)/

∑
k≥1 q(n, k) is the batch-size

distribution of the simultaneous points [10]. We restrict ourselves to stable and conservative processes for which
λ(n) =

∑
k≥1 q(n, k) < ∞ for all n. Markov processes satisfying these conditions form a very general class, and the

MCP is then characterized by its transition rates [5]. We also restrict ourselves to time homogeneous processes to add
clarity to the concepts, results and proofs. However, these can be readily generalized to the non-homogeneous case,
for which the transition rates also depend on time.

Measures of dispersion which have previously been considered for counting processes include the variance to
mean ratio V[N(t)]/E[N(t)] (for example in [18]) and the difference V[N(t)] − E[N(t)] (in [7]). We will define the
integrated dispersion index of {N(t)} as

DN(n0, t) ≡
V[N(t) − N(0)|N(0) = n0]
E[N(t) − N(0)|N(0) = n0]

. (2)

Usually n0 is assumed to be 0 in which case DN corresponds to the standard dispersion index defined as a ratio. Note
however that (1) defines {N(t)} in infinitesimal terms. This suggests the infinitesimal dispersion index which we define
as

DdN(n) ≡
limh↓0 h−1V[N(t + h) − N(t)|N(t) = n]
limh↓0 h−1E[N(t + h) − N(t)|N(t) = n]

≡
σ2

dN(n)
µdN(n)

, (3)

as an alternative to DN . The numerator and denominator of (3) are the standard definitions of infinitesimal variance
and infinitesimal mean respectively [24]. We say that {N(t)} is infinitesimally equi-dispersed at N(t) = n if DdN(n) = 1
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and infinitesimally over-dispersed if DdN(n) > 1. Correspondingly, we say that {N(t)} is integrally equi-dispersed
when DN(n0, t) = 1 and integrally over-dispersed when DN(n0, t) > 1.

To investigate sufficient conditions for infinitesimal equi-dispersion, we start by considering expressions for the
moments of the increments of a process {N(t)}:

E
[
∆Nr(t)|N(t)

]
= 0rP

(
∆N(t)=0|N(t)

)
+ 1rP

(
∆N(t)=1|N(t)

)
+

∞∑
k=2

krP
(
∆N(t)=k|N(t)

)
lim
h↓0

E
[
∆Nr(t)|N(t)

]
h

= lim
h↓0

P
(
∆N(t)=1|N(t)

)
h

+ lim
h↓0

∑
krP

(
∆N(t)=k|N(t)

)
h

. (4)

It is straightforward that the difference between any two infinitesimal or integrated moments comes from terms in
the sum corresponding to increments of size larger than one, i.e. to simultaneous events. In Theorem 1, we obtain
sufficient conditions for infinitesimal equi-dispersion by requiring orderliness in the sense of Daley and Vere-Jones
[10, page 47], i.e. P

(
∆N(t) ≥ 2

)
= o(h), and finding circumstances under which the h limit can be exchanged with the

limit of the infinite sum in (4). We use the dominated convergence theorem to show that the limits commute under
standard moment existence assumptions for a univariate simple MCP, which is therefore equi-dispersed. For example,
the Poisson process and counting processes associated with linear birth and death processes are all infinitesimally
equi-dispersed. This is true despite the well-known results that the birth and death counting processes are integrally
over- and under-dispersed respectively (see Table D1 for more details).

The moment existence conditions we use in our results concern the total number of jumps that a MCP {N(t)}
makes in an interval [t, t + h̄]. Specifically, define a stochastic bound of the infinitesimal rate function λ(N(s)) by

Λ̄(t) = sup
t≤s≤t+h̄

λ
(
N(s)

)
. (5)

Here, we suppress the dependence of Λ̄(t) on h̄. Now consider the following two properties:

P1. For each t and n there is some h̄ > 0 such that E[Λ̄(t)|N(t) = n] < ∞.

P2. For each t and n there is some h̄ > 0 such that V[Λ̄(t)|N(t) = n] < ∞.

Properties P1 and P2 require that the MCP does not have explosive behavior, and in particular they hold for any
uniform MCP (i.e., a MCP for which q(n, k) ≡ q(k)) in which the jumps are bounded by some k0 (i.e., when q(n, k) = 0
for all k > k0). P1 and P2 also hold for the simple, linear birth process and for the counting process associated to the
simple, linear death process (as defined in Table D1).

Theorem 1 (sufficient condition for Markov infinitesimal equi-dispersion). Let {N(t)} be a simple, time homogeneous,
stable and conservative Markov counting process. Supposing (P1), the infinitesimal mean is the same as the infinites-
imal rate. Supposing (P2), the infinitesimal variance is also the same as the infinitesimal rate, and therefore {N(t)} is
infinitesimally equi-dispersed.

A proof of Theorem 1 is given in Appendix A. This theorem demonstrates that simpleness is a sufficient criterion
for infinitesimal equi-dispersion of univariate MCPs. The necessity of simpleness for infinitesimal equi-dispersion is
presented in Appendix D, together with extensions to multivariate processes. Here, we continue with an extension
of Theorem 1 to mixed Markov counting processes, where the transition rates are allowed to depend on a random
variable. Such mixtures are a standard way to generate over-dispersion in categorical data models. In the context of
point processes, the mixed Poisson process in Daley and Vere-Jones [10] (called a Pólya process by Snyder and Miller
[35]) is constructed as a Poisson process with rate M conditional on the mixing random variable M. An immediate
result of this mixing is that the resulting process is integrally over-dispersed. It is straightforward to generalize this
notion to simple mixed MCPs. We construct a mixed simple MCP by first defining a collection {Nm(t),m ∈ R}
of MCPs where {Nm(t)} is a simple MCP with rate function λ(n,m). A mixing random variable M then defines a
mixed simple MCP by setting {N(t)} = {NM(t)}. We say that {N(t)} is stable and conservative if {Nm(t)} is stable and
conservative for all m. We write Λ(n) ≡ λ(n,M) for the stochastic rate function of the mixed MCP. It may be surprising
that such mixtures of simple MCPs remain infinitesimally equi-dispersed, as we show in Theorem 2. Mixed MCPs
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are non-Markovian but the measures of dispersion defined in (2) and (3) can still be computed and discussed. For
non-Markovian processes, conditioning on the entire past history in (3) could also be considered. For mixed MCPs
the conditions P1 and P2 need only the minor modification that λ(n) is replaced by Λ(n) = λ(n,M). Specifically, we
define the stochastic bound Λ̄∗(t) = supt≤s≤t+h̄ Λ

(
N(s)

)
and set

P1∗. For each t and n there is some h̄ > 0 such that E[Λ̄∗(t)|N(t) = n] < ∞.

P2∗. For each t and n there is some h̄ > 0 such that V[Λ̄∗(t)|N(t) = n] < ∞.

In the context of mixed MCPs, P1∗ or P2∗ imply that the mean rate function is finite for each n, E[Λ(n)] < ∞, so the
tails of the additional randomness resulting from M are required to be not too heavy. A proof of Theorem 2 follows a
similar approach to Theorem 1 and is available in Appendix D.

Theorem 2 (sufficient condition for mixed Markov infinitesimal equi-dispersion). Let {N(t)} be a time homogeneous,
stable and conservative mixed simple MCP, constructed as above with a mixing random variable M. Supposing (P1∗),
the infinitesimal mean is the same as the average infinitesimal rate. Supposing (P2∗), the infinitesimal variance is also
the same as the average infinitesimal rate, and therefore {N(t)} is infinitesimally equi-dispersed.

3. Over-dispersed Markov counting processes

From Section 2, we know that simple MCPs are infinitesimally equi-dispersed under standard moment conditions.
We therefore seek to generalize standard simple MCP models, to relax this dispersion constraint. Our first approach is
to investigate random time change, or subordination, which we show can be interpreted as the inclusion of continuous-
time noise in the rate function. Section 3.1 uses this technique to construct some specific processes. In Section 3.2
we consider a subtly different approach of defining an over-dispersed MCP via the limit of a sequence of processes in
which discrete-time noise is used to modify the rate.

We know from Section 2 that introducing noise via a mixing random variable in the rate function does not alter
the infinitesimal equi-dispersion of simple MCPs. This suggests considering more complex, alternative noise pro-
cesses. One possibility is to introduce some continuous-time process, say {η(t)}, in the rate function of the MCP.
Such constructions may be expected to give processes which are Markov conditional on {η(t)} but not unconditionally.
Our approach is similar to that of [28] and [38]; we propose defining a process by replacing λ(n), the deterministic
rate function of the original MCP, in Kolmogorov’s backward differential system by the stochastic process

{
λ
(
n, η(t)

)}
(see Appendix B for a formal definition). However, by taking {η(t)} to be a suitable white noise process, we differ
from [28] and [38] by constructing processes which will be shown to be unconditionally Markov. The consideration
of non-white noise is no doubt appropriate in some applications, but white noise provides a relatively simple extension
to infinitesimally equi-dispersed processes controlled by a single parameter for the magnitude of the noise. Staying
within the class of Markov processes also facilities both theoretical and numerical analysis of the resulting models.

The noise process {η(t)} could enter λ(n) additively or multiplicatively. Given the non-negativity constraint on the
infinitesimal rate functions, multiplicative non-negative noise is a simple and convenient choice. We refer to white
noise, {ξ(t)} ≡ {dL(t)/dt}, as the derivative of an integrated noise process {L(t)} which has stationary independent
increments. Note that we do not necessarily require that the mean of L(t) is zero. Although {ξ(t)} may not exist,
in the sense that {L(t)} may not have differentiable sample paths, {ξ(t)} can nevertheless be given formal meaning
[24, 6]. Restricting {ξ(t)} to non-negative white noise, the family of increasing Lévy processes provides a rich class
from which to choose the integrated noise {L(t)}. Multiplicative unbiased noise is achieved by requiring E[L(t)] = t,
in which caselimh↓0 E[∆L(t)]

/
h = 1.

From an alternative perspective, in the context of the general theory of Markov processes, random time change or
subordination of an initial process is a well established tool to obtain new processes. Following Sato [33], let {M(t)}
(the directing process) be a temporally homogeneous Markov process and {L(t)} (the subordinator) be an increasing
Lévy process. Any temporally homogeneous Markov process {N(t)} identical in law to {M ◦ L(t)} ≡

{
M

(
L(t)

)}
is said

to be subordinate to {M(t)} by the subordinator {L(t)}.
Theorem 3 below formally states that subordinate processes to simple (and hence equi-dispersed) MCPs are equiv-

alent to solutions of Lévy-driven stochastic differential equations resulting from introducing unbiased multiplicative
Lévy white-noise in the deterministic Kolmogorov backward differential system of the directing process. This gives
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us a license to interpret noise on the rate of a MCP as subordination of the MCP to a Lévy process. This guarantees,
under the very general condition of continuity of the transition probabilities of the directing process {M(t)}, that the
resulting subordinate process will remain Markovian [14, page 347]. In Subsection 3.1, we obtain exact results when
investigating concrete examples of over-dispersion by exploiting this connection between gamma white noise in the
rates and gamma subordinators. To preserve the flow of the main themes of this paper, the technical details involved
in the link between subordination and stochastic rates, including definitions of the quantities in Theorem 3 and the
proof, are deferred to Appendix B.

Theorem 3 (Lévy white noise and subordination). Consider the simple, time homogeneous, stable and conservative
Markov counting process {Mλ(t)} defined by the rate function λ(m). Let {L(t)} be a non-decreasing, Lévy process
with L(0) = 0 and E[L(t)] = t. Let {Mλξ(t)} be the process resulting from introducing unbiased, non-negative,
multiplicative, Lévy white-noise {ξ(t)} ≡ {dL(t)/dt} in the rate of {Mλ(t)}, defined as the solution to the Lévy-driven
Kolmogorov backward differential system in (B.3). Then, if this solution exists and is unique,

Mλξ(t) ∼ Mλ ◦ L(t) ∼ Mλ

(∫ t
0 ξ(u) du

)
.

3.1. Subordinate processes to simple MCPs by gamma subordinators
A convenient candidate for non-negative continuous-time noise is gamma noise. In this case, the integrated noise

process L(t) = Γ(t) is a Gamma process defined to have independent, stationary increments with Γ(t) − Γ(s) ∼
Gamma ([t − s]/τ, τ). Here, Gamma (a, b) is the gamma distribution with mean ab and variance ab2. In Subsec-
tions 3.1.1–3.1.3, we study the inclusion of gamma noise in the rates of three widely used infinitesimally equi-
dispersed processes: The Poisson process, linear birth process and linear death process.

Following the convention for naming of subordinate processes [33], we will place the name of the original process
first, followed by the name of the driving subordinating noise. We have chosen to study in detail the Poisson, linear
birth and linear death processes because they are basic blocks widely used to build more complex, multi-process
models, such as compartmental models used in population dynamics and queuing networks in engineering. What
makes these three processes fundamental is that they capture in the simplest way, i.e. linearly, the most common
possibilities in real applications. Namely, events that by occurring “kill” the potential for future events (death process,
or negative feedback); events that “reproduce” meaning that their occurrence fuels that of future events (birth process,
or positive feedback); and events which occur independently of the events which have already happened (Poisson,
or immigration process, or no feedback). For these processes we provide three results: their first two moments
about the mean, which show they are indeed infinitesimally over-dispersed; the distribution of the counting process,
which allows for exact, direct simulation of the counting process; and a closed form for the transition rates, which
fully characterize the processes and may be used for exact simulation of the event times of the point process and for
indirect, exact simulation of the counting process by aggregation.

3.1.1. The Poisson gamma process
We construct an infinitesimally over-dispersed Poisson process. This is a special case of the general compound

Poisson process [10], which can be constructed as independent jumps from an arbitrary distribution occurring at the
times of a Poisson process. Our alternative construction, derived through introducing white noise on the rate, has
an advantage that it can be applied (as we show) not just to Poisson processes but to more general univariate and
multivariate processes.

Proposition 4 (Poisson gamma process). Let {M(t)} be a MCP with q(m, 1) = α and q(m, k) = 0 for k > 1, i.e. a
time homogeneous Poisson process with rate α. Let {ξ(t)} ≡ {dΓ(t)/dt} be continuous-time gamma noise, where Γ(t) ∼
Gamma (t/τ, τ) with τ parameterizing the magnitude of the noise. Define the subordinate process {N(t)} = {M

(
Γ(t)

)
},

which can be interpreted via Theorem 3 as a Poisson process with a stochastic rate αξ(t). {N(t)} is a compound
infinitesimally over-dispersed MCP with increment probabilities

P(∆N(t) = k|N(t) = n) =
G
(
τ−1h + k

)
k! G(τ−1h)

pτ
−1h (1 − p)k , for k ∈ N,

where p = (1 + τα)−1 and G is the gamma function. The transition rates are q(n, k) = (τk)−1 (1 − p)k for k ≥ 1. The
intensity is λ(n) = τ−1 log(p−1). The infinitesimal moments are µdN(n) = α and σ2

dN(n) = α(1 + τα) with infinitesimal
dispersion DdN(n) = 1 + τα.
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3.1.2. The binomial gamma process
Here, we consider multiplicative gamma noise on the rate of a linear death process. This process has been proposed

as a model for biological populations [6], although it was defined as the limit of discrete-time stochastic processes
rather than as the solution to the Lévy-driven Kolmogorov differential system of (B.3). It is standard to define death
processes as decreasing processes, however our general framework constructs counting processes which are necessar-
ily increasing. Thus, we count cumulative deaths rather than recording the size of the remaining population.

Proposition 5 (binomial gamma process). Let {M(t)} be a MCP with q(m, 1) = δ(d0 − m) I{m < d0} and q(m, k) = 0
for k > 1, i.e. the counting process associated with a linear death process having individual death rate δ ∈ R+ and
initial population size d0 ∈ N. Let {ξ(t)} ≡ {dΓ(t)/dt} be continuous-time gamma noise, where Γ(t) ∼ Gamma (t/τ, τ)
with τ parameterizing the magnitude of the noise. Define {N(t)} = {M

(
Γ(t)

)
}, which corresponds to a death process

with a stochastic rate δξ(t) via Theorem 3. {N(t)} is a compound infinitesimally over-dispersed MCP with increment
probabilities

P(∆N(t) = k|N(t) = n) =

(
d0 − n

k

) k∑
j=0

(
k
j

)
(−1)k− j

(
1 + δτ(d0 − n − j)

)−hτ−1

, for k ∈ {0, . . . , d0 − n},

and transition rates

q(n, k) =

(
d0 − n

k

) k∑
j=0

(
k
j

)
(−1)k− j+1τ−1 ln

(
1 + δτ(d0 − n − j)

)
, for k ∈ {1, . . . , d0 − n}, (6)

for n < d0. The intensity is λ(n) = τ−1 ln
(
1 + δτ(d0 − n)

)
and the infinitesimal moments and dispersion are

µdN(n) = (d0 − n)τ−1 ln(1 + δτ), σ2
dN(n) = µdN(n) + (d0 − n)τ−1

[(
d0 − n − 1

)
ln

( (1 + δτ)2

1 + 2δτ

)]
,

DdN(n) = 1 + (d0 − n − 1)
[
2 ln(1 + δτ) − ln(1 + 2δτ)

ln(1 + δτ)

]
.

Hence, {N(t)} is infinitesimally over-dispersed for N(t) < d0 − 1 and equi-dispersed for N(t) = d0 − 1.

We see from Proposition 5 that the binomial gamma process is infinitesimally over-dispersed as long as there
is more than one individual alive from the initial population of d0 individuals. However, this over-dispersion de-
creases with the number of remaining individuals, until reaching infinitesimal equi-dispersion when there is only one
individual left.

3.1.3. The negative binomial gamma process
Unlike for the death process, when introducing gamma noise to the birth process we are only able to show exis-

tence of moments imposing a restriction on the parameter space. In particular, the birth rate of the original process
imposes an upper bound on the infinitesimal over-dispersion. When this restriction does not hold, the moments of the
resulting process do not exist, and hence our dispersion index is not defined. We include the derivations with gamma
noise for consistency with the over-dispersed Poisson and death process. Considering a common subordinator for all
three processes has the advantage that it leads naturally to multivariate extensions in which over-dispersed univariate
processes are combined to construct multivariate models. It would be possible to use other subordinators, such as the
inverse Gaussian process, for which the moment generating function is available in closed form.

Proposition 6 (negative binomial gamma process). Let {M(t)} be a MCP with q(m, 1) = βm I{m > 0} and q(m, k) = 0
for k > 1, i.e. a linear birth process having individual birth rate β ∈ R+. Let {ξ(t)} ≡ {dΓ(t)/dt} be continuous-
time gamma noise, where Γ(t) ∼ Gamma (t/τ, τ) with τ parameterizing the magnitude of the noise. Define {N(t)} =

{M
(
Γ(t)

)
}, which corresponds to a birth process with a stochastic rate βξ(t) via Theorem 3. {N(t)} is a compound

infinitesimally over-dispersed MCP with increment probabilities

P(∆N(t) = k|N(t) = n) =

(
n + k − 1

k

) k∑
j=0

(
k
j

)
(−1)k− j

(
1 + βτ(n + k − j)

)−hτ−1

, for k ∈ N,
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and transition rates

q(n, k) =

(
n + k − 1

k

) k∑
j=0

(
k
j

)
(−1)k− j+1τ−1 ln

(
1 + βτ(n + k − j)

)
, for k ≥ 1,

for n ∈ N. The intensity is λ(n) = τ−1 ln
(
1 + βτn

)
. For 2βτ < 1, the infinitesimal moments and dispersion are

µdN(n) = nτ−1 ln
( 1
1 − βτ

)
, σ2

dN(n) = µdN + nτ−1
[(

n − 1
)

ln
( (1 − βτ)2

1 − 2βτ

)]
,

DdN(n) = 1 + (n − 1)
[
2 ln(1 − βτ) − ln(1 − 2βτ)

− ln(1 − βτ)

]
.

Hence, {N(t)} is infinitesimally over-dispersed for N(t) > 1 and equi-dispersed for N(t) = 1.

3.1.4. The bivariate binomial gamma process
In some special cases, subordination can enable construction of multivariate over-dispersed MCPs. A simple

example of this occurs when a single subordinator is applied to two independent simple MCPs. This corresponds
to two processes which are conditionally independent but have the same noise process applied to each rate. Such
processes arise, for example, in disease transmission models [26]: if new infections are split into mild and severe
cases, then both processes will suffer the same transition rate variability due to weather and heterogeneous human
social aggregation. In Proposition 7, we consider the case of two death processes coupled by sharing a common
stochastic per-capita death rate. More generally, one could consider dependent processes with different transition
rates and affected by non-identical but correlated noise processes. The proof of Proposition 7 is similar to the proof
of Proposition 5, and is available in Appendix D. In the statement and proof of the proposition, we implicitly extend
the definition given for transition rate in (1) to the bivariate case. This extension is formalized later in equation (11).

Proposition 7 (bivariate binomial gamma process). Let {M1(t)} and {M2(t)} be independent MCPs with q(mi, 1) =

δ(d0i − mi) I{mi < d0i} and q(mi, ki) = 0 for ki > 1 and i = 1, 2, i.e. the counting processes associated with two
independent linear death processes having an equal individual death rate δ ∈ R+ and initial population sizes d0i ∈ N.
Let {ξ(t)} ≡ {dΓ(t)/dt} be continuous-time gamma noise, where Γ(t) ∼ Gamma (t/τ, τ) with τ parameterizing the
magnitude of the noise. Define {Ni(t)} = {Mi

(
Γ(t)

)
}, for i = 1, 2, corresponding to two death processes each having

stochastic rate δξ(t) via Theorem 3. {N1(t)} and {N2(t)} are compound infinitesimally over-dispersed MCPs with joint
increment probabilities

P
(
∆Ni(t) = ki|Ni(t) = ni

)
=

(
d01 − n1

k1

)(
d02 − n2

k2

) k1+k2∑
j=0

(
k1 + k2

j

)
(−1)k1+k2− j

(
1 + δτ(d01 + d02 − n1 − n2 − j)

)−hτ−1

for ki ∈ {0, . . . , d0i − ni}. The transition rates of the bivariate Markov chain {N1(t),N2(t)} are

q
(
(n1, n2), (k1, k2)

)
=

(
d01 − n1

k1

)(
d02 − n2

k2

) k1+k2∑
j=0

(
k1 + k2

j

)
(−1)k1+k2− j+1τ−1 ln

(
1 + δτ(d01 + d02 − n1 − n2 − j)

)
for ni < d0i and ki ∈ {1, . . . , d0i−ni}. The marginal transition rates, increment probabilities and infinitesimal moments
of {Ni(t)} are the same as those of a binomial gamma process. The infinitesimal covariance of {N1(t)} and {N2(t)} is

σdN1dN2 (n1, n2) = lim
h↓0

h−1Cov[N1(t + h) − N1(t),N2(t + h) − N2(t)|N1(t) = n1,N2(t) = n2]

= (d01 − n1)(d02 − n2)τ−1 ln
( (1 + δτ)2

1 + 2δτ

)
> 0.
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3.2. The binomial beta process
An alternative to the subordination construction of Section 3.1 is to define noise on the rate of a continuous-time

MCP via a limit of discrete-time processes [6]. Here, we investigate a specific example of an infinitesimally over-
dispersed death process. As we will see in Section 4, infinitesimally over-dispersed death processes play a useful
role in constructing over-dispersed multivariate models. An inconvenience of the binomial gamma process is that its
infinitesimal moments are a non-linear system of two equations which, to obtain a desired mean and variance, needs
to be solved numerically. A moment-based parameterization allows to easily change the variability (via the variance)
for a fixed location (fixing the mean), facilitating the interpretation of the parameters. In the context of counting
processes, such parameterization has the additional advantage that it permits a direct and straightforward comparison
with analogous stochastic differential equations. This motivates an alternative over-dispersed death process model,
the binomial beta process defined below, which can be easily parameterized in terms of the infinitesimal moments.

Instead of introducing continuous-time noise to the rates, we consider introducing it directly to the transition
probabilities of the death process. Since probabilities must be constrained to the unit interval we need to consider an
alternative to gamma noise, and a convenient choice is beta noise. The construction of a beta process as a process with
beta independent increments is not, however, straightforward [22]. Our construction of compound processes based on
noise introduction consisting on taking limits of discrete-time processes avoids this difficulty. Let {M(t)} be a MCP
with q(m, 1) = δ(d0 − m) I{m < d0} and q(m, k) = 0 for k > 1, i.e. the counting process associated with a linear
death process having individual death rate δ ∈ R+ and initial population size d0 ∈ N. The increments of {M(t)} are
binomially distributed,

M(t + h) − M(t)|M(t) ∼ Binom
(
d0 − M(t), π(h)

)
for π(h) = 1 − e−δh.

We consider a discrete-time process
{
Mh(t), t ∈ {0, h, 2h, . . . }

}
, defined by constructing a sequence of independent,

identically distributed random variables Π0,Π1, . . . and setting

Mh
(
(i + 1)h

)
− Mh(ih)

∣∣∣ Mh(ih),Πi ∼ Binom
(
d0 − Mh(ih),Πi

)
.

To interpret Πi as noise added to π(h), we require E[Πi] = π(h) and Πi ∈ [0, 1]. If a finite limit

q(n, k) = lim
h→0

h−1
[
P
(
Mh(h) − Mh(0) = k|Mh(0) = n

)]
exists for each n < d0 and k ∈ {1, . . . , d0 − n}, with

∑
k q(n, k) < ∞, then we define {N(t)} to be a MCP with these

transition rates. The binomial beta process corresponds to the specific choice Πi ∼ Beta(a, b), the beta distribution
having mean a/(a+b) and variance ab/

(
(a+b)2(a+b+1)

)
, with a = cπ(h) and b = c(1−π(h)). Here, c > 0 is an inverse

noise parameter in the sense that it does not affect the mean of Πi and the variance V [Πi] = π(h)
(
1 − π(h))(c + 1)−1

is a decreasing function of c. Proposition 8 shows that this choice leads to a well-defined process and identifies its
infinitesimal mean and variance.

Proposition 8 (binomial beta process). Let {N(t)} be the binomial beta process constructed above, with initial pop-
ulation size d0, individual death rate δ and noise parameter c. {N(t)} is an infinitesimally over-dispersed compound
Markov counting process with transition rates being

q(n, k) =

(
d0 − n

k

)
G(k) G(c + d0 − n − k)

G(c + d0 − n)
cδ

for n < d0 and k ∈ {1, . . . , d0 − n} and zero otherwise. The infinitesimal mean is µdN(n) = (d0 − n)δ. The infinitesimal
variance is σ2

dN(n) =
(
1 + ω(n)

)
µdN(n) where ω(n) = (d0 − n − 1)(c + 1)−1. The infinitesimal dispersion is therefore

DdN(n) = 1 + ω(n), and so the process is infinitesimally over-dispersed when N(t) < d0 − 1 and, since ω(d0 − 1) = 0,
it is equi-dispersed when N(t) = d0 − 1.

Although the infinitesimal moments of the binomial beta process have a simpler form than those of the bino-
mial gamma process, we no longer obtain an expression for the increment probabilities. Hence, exact simulation of
the counts is only possible (with the present results) by aggregation from exact event time simulation based on the
provided transition rates.
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Figure 1: Flow diagram for measles. The population is divided into four compartments {S , E, I,R} corresponding to susceptible, exposed, infected
and recovered individuals respectively. Two auxiliary nodes {B,D} are used to represent the birth and death of individuals. Arrows represent
possible transitions, and their labels parameterize the corresponding transition rates.

A similar construction of a negative binomial beta process would follow by adding noise to the individual birth
event probability for a sequence of discrete-time birth process, i.e. defining a sequence of random variables with mean
π(h) = 1 − e−βh taking values in the unit interval. As for the binomial beta process, this construction would provide a
more convenient parameterization in terms of infinitesimal moments.

4. Markov counting systems and their infinitesimal dispersion

Models for queues, networks of queues, or biological systems may involve multiple interacting counting processes.
We discuss such processes in the context of an example drawn from the study of infectious diseases, specifically
measles transmission dynamics. This example is presented as a scientific application of the processes developed in
Section 3. However, it also motivates a general model for dependent MCPs which we call a Markov counting system.
We propose a definition of infinitesimal dispersion for such a system which extends the definition for a MCP. One
can go beyond this to extend the formalities of Sections 2 and 3 to these systems, and such a program is described in
Appendix D.

There are two distinct motivations for modeling simultaneous events. Firstly, the process in question may indeed
have such occurrences, and such applications arise in modeling production systems and rental businesses [31], physi-
cal processes and quantum optics [16] and internet traffic [27]. Secondly, the process may have clusters of event times
that are short compared to the scale of primary interest. For example, in some applications only aggregated counts
and not event times are available, and in this case any clustering time scale which is shorter than the aggregation
timescale may be appropriately modeled by simultaneous events. Modeling disease transmission falls into this latter
category. It is hard to imagine having exact event time data, and at sufficiently fine time scales the events of becoming
infected, infectious and recovered are not even well defined. However, it is easy to imagine clusters of event times,
for example, multiple infections caused by a sneeze on a crowded bus. The conceptual, theoretical and computational
convenience of Markov processes has led to their widespread use for modeling disease transmission processes. In the
past, a modeling hypothesis that events occur non-simultaneously has been favored. This assumption, which has often
been made without much consideration of alternatives, can eliminate the possibility of a good statistical fit to data,
since we have shown that simultaneous events are required in order for MCPs and Markov counting systems to obtain
the over-dispersion observed in data.

Worldwide, measles remains a leading cause of vaccine-preventable death and disability [15]. Global eradication
of this highly infectious disease, by intensive vaccination, would be difficult but perhaps not impossible [11]. A funda-
mental class of models for measles transmission places each individual into exactly one of four compartments termed
susceptible (S), exposed and carrying a latent infection (E), infected and infectious (I) and recovered or removed (R).
Much previous analysis of SEIR models has employed continuous-time Markov chain models in which simultane-
ous transitions are assumed not to occur. Based on the results of Section 2, one might expect that such models rule
out infinitesimal over-dispersion in a multivariate sense. SEIR-type Markov chain models for disease transmission
with gamma noise added to the transition rates have been demonstrated to give improved fit to data [6, 21]. Here,
we show how these stochastic rate Markov chain models can be constructed and generalized using infinitesimally
over-dispersed MCPs.

The weighted directed graph in Figure 1 gives a diagrammatic representation of a SEIR model. The four com-
partments {S , E, I,R} are represented by boxed nodes. The circled nodes {B,D} are used notationally to discuss flows
into and out of the population, representing the biological birth and death of individuals. Arrows are used to indicate
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the possibility of transitions between nodes, with labels parameterizing the transition rates. The state of the system
at time t is given by the number of individuals in each compartment and is written as

(
S (t), E(t), I(t),R(t)

)
. The stan-

dard interpretation of Figure 1 as a Markov chain [25] has transition rates conditional on X(t) = (s, e, i, r), using the
notation of equation (11) below, given by

Q
[
(s, e, i, r), (s − 1, e + 1, i, r)

]
= νS E(i, t) s I{s > 0} , (7)

Q
[
(s, e, i, r), (s + 1, e, i, r)

]
= νBS (t), (8)

Q
[
(s, e, i, r), (s, e − 1, i + 1, r)

]
= νEI e I{e > 0} , Q

[
(s, e, i, r), (s, e, i − 1, r + 1)

]
= νIR i I{i > 0} ,

q
[
(s, e, i, r), (s − 1, e, i, r)

]
= νS D s I{s > 0} , Q

[
(s, e, i, r), (s, e − 1, i, r)

]
= νED e I{e > 0} ,

Q
[
(s, e, i, r), (s, e, i − 1, r)

]
= νID i I{i > 0} , Q

[
(s, e, i, r), (s, e, i, r − 1)

]
= νRD r I{r > 0} ,

and zero otherwise. Here, νS E(i, t) = β(t)(i + γ) where β(t) is a seasonally-varying constant and γ models an external
source of infections. The population birth rate νBS (t) and per-capita death rate νS D = νED = νID = νRD are considered
known from census data. Mortality from measles has become negligible in developed countries and is ignored. The
remaining per-capita rate parameters, νEI and νIR, are treated as constants. Bretó et al. [6] and He et al. [21] proposed
introducing gamma noise to νS E(i, t) by replacing (7) with

Q
[
(s, e, i, r), (s − k, e + k, i, r)

]
=

(
s
k

) k∑
j=0

(
k
j

)
(−1)k− j+1τ−1 ln

(
1 + νS E(i, t)τ(s − j)

)
for k = 1, . . . , s. (9)

This may be interpreted as the transition rate of the binomial gamma process in equation (6) with remaining population
size d0 − n = s and with per-capita ‘death’ rate δ = νS E(i, t). Here, ‘deaths’ correspond to transitions from S to E, and
at time t there are s individuals available to make this transition. The magnitude of the noise on the transition rate is
parameterized by τ, and (9) reduces to (7) in the limit as τ→ 0.This interpretation of (9) provides a general approach
for introducing white noise to rates that depend on time and the state of other compartments. One can first add white
noise to an appropriate homogeneous process, as carried out in Section 3. Then one can introduce dependencies
by making the fixed parameters of the homogeneous process functions of time (e.g., in νBS (t)), the current state of
the system or both (e.g., in νS E(i, t)). We thereby avoid the consideration of subordination in multivariate and time-
inhomogeneous settings. Replacing (7) by (9) only affects the infinitesimal properties (mean, variance and dispersion)
of the S E transitions but not those of other transitions. This assertion is checked as part of the formal treatment
of the multivariate extension in Appendix D. As a consequence, the interpretation of the rest of transition rates and
parameters remains unaltered by the addition of the infinitesimal variability. Also, the infinitesimal properties of the
S E transition follow directly from the univariate results (already available from Section 3), unaffected by the other
transitions or by whether independent additional variability is added to them.

Inference for either the standard model or the over-dispersed version (9) is complicated by the availability of only
incomplete observations consisting of biweekly case reports. Modeling these data as the newly infected individuals
in the corresponding time period, scaled by a reporting rate and perturbed by a measurement error, gives rise to a
partially observed Markov process known as a state space model [34]. The likelihood of such a nonlinear state space
model may be evaluated and maximized by Monte Carlo methods. He et al [21] carried out such a procedure for
measles data from London, England, and obtained a 95% confidence interval for τ of [0.053, 0.10]. Including over-
dispersion is therefore mandated for the data, in the context of this model. A specific consequence of failure to include
over-dispersion is that parameter estimates are biased toward models that allow increased stochastic variability. In our
measles example, the mean infectious and latent periods were estimated to be close to the lower range of previously
available estimates based on clinical experiments when over-dispersion was not allowed for. When allowing for over-
dispersion, the estimates changed to the upper range [21]. The effect of over-dispersion on parameter estimates is a
consequence of nonlinearity in the model. For linear models, over-dispersion affects estimates of the uncertainty of
parameter estimates but not the estimates themselves [29].

If one wished to add noise to the population birth rate νBS (t), one could modify the inhomogeneous Poisson process
specified in (8) by using the transition rates for the Poisson gamma process of Section 3. If births were modeled as
a per-capita rate, rather than based on census data, then the natural simple model is Q

[
(s, e, i, r), (s + 1, e, i, r)

]
=
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νBS (t)p I{p > 0} where p = s + e + i + r. To include noise in the rate of this negative binomial process (i.e., linear
birth process), one could make use of the negative binomial gamma process. The binomial beta process provides an
alternative construction for modeling stochastic rates in (7).

From a biological perspective, mechanisms for over-dispersion in the force of infection could be variations in
transmissibility (modulated by temperature or humidity) or variations in contact rates between individuals (due to
aggregations such as large sporting events). From a statistical perspective, any misspecification could result in the data
requesting over-dispersion when fitting a model. This is an instance of the common statistical issue of distinguishing
the extent to which model prediction errors are driven by model misspecification (i.e., imperfect knowledge of the
system) versus genuine stochasticity in the system.

To generalize this measles transmission example, let C be a finite collection of compartments, corresponding
to C = {S , E, I,R} in Figure 1. Let A be a finite collection of auxiliary nodes, corresponding to A = {B,D}
in Figure 1. The collection of possible transitions consists of pairs of compartments/nodes in T ⊂ (C × C) ∪
(C × A) ∪ (A × C) with the prohibition of reflexive transitions of the type (i, i) for i ∈ C. In Figure 1, T ={
(B, S ), (S , E), (E, I), (I,R), (S ,D), (E,D), (I,D), (R,D)

}
.

We consider a collection of counting processes {N(t)} = {Ni j(t) : t ∈ R+, (i, j) ∈ T } where {Ni j(t)} counts events of
the i j-type. We now define a process {X(t)} ≡

{
Xc(t) : c ∈ C, t ∈ R+} by

Xc(t) = Xc(0) +
∑

(i,c)∈T

Nic(t) −
∑

(c, j)∈T

Nc j(t). (10)

We suppose that {X(t),N(t)} is a continuous-time Markov chain defined by the transition rates

q(x, k) ≡ Q
[
(x1, . . . , xc), (x1 + u1, . . . , xc + uc)

]
≡ lim

h↓0

P
(
N(t + h)=n + k, X(t + h)=x + u|X(t)=x, N(t)=n

)
h

(11)

where k = {ki j, (i, j) ∈ T } ∈ NT and u = {uc, c ∈ C}with uc =
∑

(i,c)∈T kic−
∑

(c, j)∈T kc j. Our notation for transition rates
uses lower case q when the arguments are the state of origin and the increments of the counting processes, following
our univariate MCP notation. We use upper case Q when the arguments are the states from which and to which the
transition occurs. Note that the rates in (11) are assumed to depend on x but not n, and hence {X(t)} is itself a Markov
chain. We suppose that all other transition rates for {X(t), N(t)} are zero. We call {X(t)}, constructed in this way, a
Markov counting system (MCS). Although we have assumed temporal homogeneity when specifying (11), the class
of models can readily be extended to include dependence on time. As demonstrated in the measles SEIR example
above, it can be convenient to add temporal inhomogeneity after defining stochastic rates in the context of a suitable
time homogeneous version of the model.

We call a MCS simple if q(x, k) > 0 only when ki j = 1 for some (i, j) ∈ T and k`m = 0 for (`,m) , (i, j).
Similarly, we call a MCS compound if q(x, k) > 0 only when ki j > 0 for some (i, j) ∈ T and k`m = 0 for (`,m) , (i, j).
In words, a simple MCS has only single individuals moving between compartments. A compound MCS is one
where simultaneous transitions of the same type are allowed, but simultaneous transitions of different types are not
allowed. These two types of MCS may be defined in terms of transition rates qi j(x, k) ≡ q(x, 1i jk) where 1i j is a vector
of zeros with a one in the i j position. In general, (11) permits simultaneous events of mixed types, including the
bivariate binomial gamma process of Section 3.1.4. Simple MCS models are widely used in science and engineering
[17, 25]. Compound MCS processes, interpreted as adding white noise to the rate of a simple MCS, can be constructed
by writing qi j(x, k) in terms of the processes developed in Section 3, as illustrated above with the SEIR model.
Specifically, if i ∈ C then one could set qi j(x, k) = q(xi, k) where x = {xc, c ∈ C} and q(xi, k) is the transition rate
function for the binomial gamma or binomial beta process. An example of this is the replacement of (7) by (9) to
add noise to the transmission rate in the SEIR model. When the components of {X(t)} have non-negativity constraints
(e.g. the SEIR model, where the number of individuals in each compartment must be non-negative at all times), an
unbounded process such as the Poisson gamma process or negative binomial gamma process is inappropriate. When
new individuals enter the system, either as immigrants or as newborns, then i ∈ A. In the case of immigration it might
be appropriate to set qi j(x, k) = q(k) where q(k) is the transition rate function of the poisson gamma. Alternatively,
modeling new arrivals into the system as a birth process with stochastic rates suggests setting qi j(x, k) = q(x j, k)
where q(x j, k) is the negative binomial gamma transition rate function. Bivariate dependence, with simultaneous
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events of mixed type, could be constructed by incorporating a process such as the bivariate binomial gamma process
of Section 3.1.4.

The discussion of the SEIR example above might serve as a starting point to formalize a general approach and
framework for constructing multivariate systems using simpler lower-dimensional components (including univariate
compound MCPs) as ‘building blocks’ whose transition rates can be ‘stacked’ to construct MCS models. Some
progress in this direction is obtained in Appendix D, and here we summarize these results. We show that, using an
appropriate extension of conditions (P1) and (P2), a MCS constructed via blocks inherits the infinitesimal behavior of
the individual blocks. We define infinitesimal dispersion of a MCS for each pair (i, j) ∈ T in terms of the increments
of the counting processes {Ni j(t)}:

Di j
dX(x) ≡

limh↓0 h−1V[Ni j(t + h) − Ni j(t)|X(t) = x]
limh↓0 h−1E[Ni j(t + h) − Ni j(t)|X(t) = x]

≡
σ

2 i j
dX (x)

µ
i j
dX(x)

Theorem D2 in Appendix D implies that, under general regularity conditions, (i) a simple MCS is necessarily in-
finitesimally equi-dispersed for all (i, j) ∈ T ; (ii) a compound MCS is infinitesimally over-dispersed for and only for
index pairs (i, j) for which q(x, k) > 0 for some k with ki j > 1; and (iii) for each pair (i, j), the infinitesimal dispersion
Di j

dX(x) is determined only by transition rates involving i j-type transitions. In other words, results for the univariate
setting of Sections 2 and 3 extend to multivariate systems of counting processes.
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Appendix A. Proof of Theorem 1

Let {P(t)} be a conditional Poisson process with event rate Λ̄(t). All probabilities and expectations in the remainder
of this proof are conditional on N(t) = n (in addition to other conditioning, where appropriate). Then, since ∆N(t) is
non-negative,

E[∆N(t)] = E[∆N(t) I{∆N(t) > 0} ] = E
[
I{∆N(t) = 1} + ∆N(t) I{∆N(t) > 1}

]
. (A.1)

Now, it is immediate that E
[
I{∆N(t) = 1}

]
= λ(n)h + o(h). Also, since {N(t)} is simple, {∆N(t)} is stochastically

smaller than {∆P(t)} and

E
[
∆N(t) I{∆N(t) > 1}

]
≤ E

[
∆P(t) I{∆P(t) > 1}

]
= E

[
E
[
∆P(t) I{∆P(t) > 1} |Λ̄(t)

]]
.

Using (A.1) with N(t) replaced by P(t), noting also that E
[
∆P(t)|Λ̄(t)

]
= hΛ̄(t) and E

[
I{∆P(t) = 1} |Λ̄(t)

]
= hΛ̄(t) exp

{
−

hΛ̄(t)
}
, it follows that

E
[
∆N(t) I{∆N(t) > 1}

]
≤ E

[
hΛ̄(t) − hΛ̄(t) exp

{
− hΛ̄(t)

}]
= E

[
hΛ̄(t)

(
1 − exp{−hΛ̄(t)}

)]
.
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It follows by dominated convergence, since λ̄
(
1 − exp{−hλ̄}

)
≤ λ̄ and by the assumption that E[Λ̄(t)] is finite (note

that the distribution of Λ̄(t) depends on h̄ and not h), that

lim
h↓0

E
[
hΛ̄(t)

(
1 − exp{−hΛ̄(t)}

)]
h

= E
[

lim
h↓0

Λ̄(t)
(
1 − exp{−hΛ̄(t)}

)]
= 0.

Therefore, E
[
∆N(t) I{∆N(t) > 1}

]
= o(h) and E[∆N(t)] = λ(n)h + o(h). Similarly, replacing first by second moments,

E
[
(∆N(t))2 I{∆N(t) > 1}

]
= o(h) and E[(∆N(t))2] = λ(n)h + o(h), since

E
[
(∆N(t))2 I{∆N(t) > 1}

]
≤ E

[
(∆P(t))2 I{∆P(t) > 1}

]
= E

[
E
[
(∆P(t))2 I{∆P(t) > 1} |Λ̄(t)

]]
= E

[
hΛ̄(t) + h2Λ̄2(t) − hΛ̄(t) exp{−hΛ̄(t)}

]
≤ E

[
2h2Λ̄2(t)

]
= o(h),

where the last line follows by 1 − exp{−x} ≤ x and E[Λ̄2(t)] being finite. Equi-dispersion follows from V[∆N(t)] =

E
[
(∆N(t))2]− E[∆N(t)]2 = λ(n)h + o(h), where E[∆N(t)]2 is o(h) by stability of {N(t)} which implies λ(n) < ∞ for all

n.

Appendix B. Multiplicative Lévy white noise via subordination

Let {Mλ(t)} be the simple, time homogeneous, conservative and stable MCP with rate function λ : N → R+ of
Theorem 3. It will be convenient here to write M(λ)(t) instead of Mλ(t). Write πM(λ)

m,m+k(h) for the integrated increment
(or transition) probabilities of {M(λ)(t)}, defined as

πM(λ)
m,m+k(h) ≡ P

(
∆M(t) = k|M(t) = m

)
.

For {M(λ)(t)}, Kolmogorov’s Backward Differential System is satisfied [5], i.e.

d
dh
πM(λ)

m,m+k(h) =
[
πM(λ)

m+1,m+k(h) − πM(λ)
m,m+k(h)

]
λ(m). (B.1)

This suggests the following definition of {M(λξ)(t)}, a simple MCP {M(λ)(t)} with multiplicative continuous-time
noise in the rate function, where {ξ(t)} ≡ {dL(t)/dt} for a non-decreasing, Lévy integrated noise process {L(t)} with
L(0) = 0 and E[L(t)] = t, as in Theorem 3. Define the process {M(λξ)(t)} by

π
M(λξ)
m,m+k(h) ≡ E

[
Π

M(λξ)
m,m+k(h)

]
where Π

M(λξ)
m,m+k(h) is specified, by analogy to (B.1), as the solution to a stochastic differential equation

dΠ
M(λξ)
m,m+k(h) =

[
Π

M(λξ)
m+1,m+k(h) − Π

M(λξ)
m,m+k(h)

]
λ(m) dL(h), (B.2)

or, essentially equivalently,

Π
M(λξ)
m,m+k(h) = Π

M(λξ)
m,m+k(0) +

h∫
0

[
Π

M(λξ)
m+1,m+k(r−) − Π

M(λξ)
m,m+k(r−)

]
λ(m) dL(r) (B.3)

To give meaning to (B.2) and (B.3), it is necessary to define a stochastic integral. Here, we use the Marcus canon-
ical stochastic integral with Marcus map Φ(u, x, y) = πM(λ)

m,m+k(x + uy). The Marcus canonical integral is a stochastic
integral developed in the context of Lévy calculus [2]. It is constructed to satisfy a chain rule of the Newton-Leibniz
type (unlike the Itô integral). In the case of continuous Lévy processes, the Marcus canonical integral becomes the
Stratonovich integral. For jump processes, the Marcus canonical integral heuristically corresponds to approximating
trajectories by increasingly accurate continuous piecewise linear functions. We interpret (B.2) as a stochastic version
of (B.1). We then think of Π

M(λξ)
m,m+k(h) as stochastic transition probabilities, conditional on the noise process, giving rise

to deterministic transition probabilities πM(λξ)
m,m+k(h) once this noise is integrated out.
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Proof of Theorem 3(Lévy white noise and subordination). By definition

πM(λ)◦L
m,m+k (h) ≡ E

[
πM(λ)

m,m+k
(
L(h)

)]
.

Applying Theorem 4.4.28 of Applebaum [2] with f
(
L(h)

)
= Π

M(λ)
m,m+k

(
L(h)

)
, it follows that f ∈ C3(R) by smoothness

of f implied by (B.1). Since Π
M(λ)
m,m+k(0) = 0, it also follows that

Π
M(λ)
m,m+k

(
L(h)

)
=

h∫
0

[
Π

M(λ)
m+1,m+k

(
L(r−)

)
− Π

M(λ)
m,m+k

(
L(r−)

)]
λ(m) dL(r),

so that Π
M(λ)
m,m+k

(
L(h)

)
satisfies (B.3). Given uniqueness and existence of (B.3), we obtain

πM(λ)
m,m+k

(
L(h)

)
∼ Π

M(λξ)
m,m+k(h),

and hence πM(λ)◦L
m,m+k (h) = π

M(λξ)
m,m+k(h).

Appendix C. Properties of certain compound Markov counting processes

We describe the main steps in the proofs of Propositions 4, 5, 6 and 8. Additional algebraic details are available
in Appendix D (Section D2).

Proof of Proposition 4 (Poisson gamma process). It is a standard result that if α∆Γ(t) follows a gamma distribution
with mean αh and variance α2τh then the distribution of the increment of ∆N(t) = N(t+h)−N(t) = M

(
Γ(t+h)

)
−M

(
Γ(t)

)
is negative binomial with probability mass function

P(∆N(t) = k|N(t) = n) =
G
(
τ−1h + k

)
k! G(τ−1h)

pτ
−1h (1 − p)k , (C.1)

where p = (1 + τα)−1. The transition rates follow by a Taylor series expansion about h = 0, noting that G(η+k)
k! G(η) =

k−1η + o(η). The infinitesimal moments follow directly from the moments of the negative binomial representation in
(C.1).

Proof of Proposition 5 (binomial gamma process). Since {N(t)} is the counting process associated with a conditional
linear death process, the increment process is binomial with parameters size d0 − n and event probability Π(t) =

1 − e−δ∆Γ(t), i.e. P(∆N(t) = k|N(t) = n,∆Γ(t)) =
(

d0−n
k

)
Π(t)k(1 − Π(t))d0−n−k for k ∈ {0, 1, . . . , d0 − n}. We integrate out

the continuous-time gamma noise, making use of the multinomial theorem as follows:

P(∆N = k|N(t) = n) =

∞∫
0

(
d0 − n

k

)[
1 − e−x]k[e−x]d0−n−k xa−1e−xbba

G(a)
dx

=

(
d0 − n

k

) ∞∫
0

[ k∑
j=0

(
k
j

)
(−e−x)k− j

]
e−x(d0−n−k) xa−1e−xbba

G(a)
dx

=

(
d0 − n

k

) k∑
j=0

(
k
j

)
(−1)k− j ba

(b + d0 − n − j)a ×

∞∫
0

xa−1e−x(b+d0−n− j)(b + d0 − n − j)a

G(a)
dx

=

(
d0 − n

k

) k∑
j=0

(
k
j

)
(−1)k− j

(
1 + δτ(d0 − n − j)

)−hτ−1
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for k ∈ {0, . . . , d0 − n}, with a = hτ−1 and b = δ−1τ−1. The transition probabilities follow by applying the Taylor series
expansion

(
1 + δτ`

)−hτ−1
= 1 − τ−1 ln

(
1 + δτ`

)
h + o(h). The integrated moments can be written as

E[∆N(t)|N(t) = n] = (d0 − n)E[Π(t)|N(t) = n] (C.2)
V[∆N(t)|N(t) = n] = V[(d0 − n)Π(t)|N(t) = n] + E

[
(d0 − n)Π(t)(1 − Π(t))|N(t) = n

]
(C.3)

Recalling that Π(t) = 1−e−δ∆Γ(t), and making use of the moment generating function E
[
exp{zδ∆Γ(t)}

]
= (1 − zδτ)−τ

−1h

for zδτ < 1 and h, λ, τ > 0, results in a closed form expression for (C.2) and (C.3). The infinitesimal moments follow
by taking a Taylor expansion around h = 0.

Proof of Proposition 6 (negative binomial gamma process). Since {N(t)} is a conditional linear birth process, the in-
crement process is negative binomial with parameters being the number of failures n and the failure probability
Π(t) = e−β∆Γ(t), i.e.,

P(∆N(t) = k|N(t) = n,∆Γ(t)) =

(
n + k − 1

k

)
Π(t)n (1 − Π(t))k ,

for k ∈ N. Following a similar calculation to the proof of Proposition 5, with a = hτ−1 and b = δ−1τ−1, we have

P(∆N = k|N(t) = n) =

∞∫
0

(
n + k − 1

k

)[
e−x]n[1 − e−x]k xa−1e−xbba

G(a)
dx

=

(
n + k − 1

k

) ∞∫
0

[ k∑
j=0

(
k
j

)
(−e−x)k− j

]
e−xn xa−1e−xbba

G(a)
dx

=

(
n + k − 1

k

) k∑
j=0

(
k
j

)
(−1)k− j

(
1 + βτ(n + k − j)

)−hτ−1

The limiting probabilities follow by a Taylor series expansion about h = 0. Writing Θ(t) =
1−Π(t)

Π(t) = exp{β∆Γ(t)} − 1,
we have

E[∆N(t)|N(t) = n] = nE[Θ(t)|N(t) = n]
V[∆N(t)|N(t) = n] = V[nΘ(t)|N(t) = n] + E[nΘ(t)(1 + Θ(t))|N(t) = n].

These moments can be calculated explicitly via the moment generating function, E
[
exp{zβ∆Γ(t)}

]
= (1 − zβτ)−τ

−1h for
zβτ < 1 and h, λ, τ > 0. The infinitesimal moments follow by taking a Taylor series expansion about h = 0.

Proof of Proposition 8 (binomial beta process). Mh(h) − Mh(0) given Mh(0) = m is binomial with parameters size
d0 − m and death probability Π1, i.e.

P
(
Mh(h) − Mh(0)=k|Mh(0)=m,Π1

)
=

(
d0 − m

k

)(
Π1

)k(1 − Π1
)d0−m−k

for k ∈ {0, 1, . . . , d0 −m}. We integrate out the beta noise using the fact that Mh(h)−Mh(0), conditional on Mh(0) = m,
has a beta binomial distribution. Setting a = c(1 − e−δh) and b = ce−δh, we have

P
(
Mh(h) − Mh(0)=k|Mh(0)=m

)
=

(
d0 − n

k

)
G(a + b)G(k + a)G(d0 − m − k + b)

G(a) G(b) G(a + b + d0 − m)
(C.4)

for k ∈ {1, . . . , d0 − m}. Now rewrite (C.4) using the properties that, for k ≥ 1, G(k + a) = aG(a)G(k) + o(a) and
G(m + b) =

G(m+a+b)G(b)
G(a+b) + O(a). Noting that a + b = c and that a = cδh + o(h), we obtain the required transition

probabilities. The infinitesimal moments follow by a Taylor series expansion of the beta binomial moments:

E[Mh(h) − Mh(0)|Mh(0) = m] = (d0 − m)
a

a + b
; V[Mh(h) − Mh(0)|Mh(0) = m] = (d0 − m)

ab(d0 − m + a + b)
(a + b)2(1 + a + b)

.
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The infinitesimal moments of the MCP defined by these limiting transition probabilities can be derived from the
moments above because the sums in the conditional moments have a finite number terms d0 − m and the h limits can
therefore be passed inside these moments.
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Appendix D
Submitted to Stochastic Processes and Their Applications as an electronic supplement to the preceding article

D1 Properties of certain univariate simple Markov counting processes
D2 Properties of certain univariate compound Markov counting processes
D3 Equi-dispersion of mixed simple Markov counting processes
D4 Sufficient and necessary conditions for equi- and over-dispersion of Markov counting systems
D5 Construction of over-dispersed Markov counting systems

18



D1. Properties of certain univariate simple Markov counting processes

Table D1: Increment mean, increment variance and dispersion indices of some standard counting processes. Columns correspond to the time
homogeneous Poisson process with intensity α; the linear birth process with per-capita birth rate β and initial population n; the process counting
deaths in a linear death process with per-capita death rate δ and initial population d0.

Poisson Birth Death

E[∆N(t)|N(t) = n] αh n(eβh − 1) (d0 − n)(1 − e−δh)

V[∆N(t)|N(t) = n] αh neβh(eβh − 1) (d0 − n)(1 − e−δh)e−δh

DN(n0, t) 1 eβt e−δt

DdN(n) 1 1 1

The results in Table D1 are all well known. For example, see the discussion of these processes by Bharucha and
Reid [4].

D2. Properties of certain univariate compound Markov counting processes

In this section, we give additional details on the proofs of Propositions 4, 5, 6 and 8.

Proof of Proposition 4 (Poisson gamma process). Since {N(t)} is a conditional Poisson process,

P(∆N(t) = k|N(t),∆Γ(t)) =
e−α∆Γ(t)(α∆Γ(t))k

k!
.

It is a standard result that if α∆Γ(t) follows a gamma distribution with mean αh and variance α2τh the distribution of
the increments of {N(t)} is negative binomial with probability mass function

P(∆N(t) = k|N(t) = n) =
G

(
τ−1h + k

)
k!G(τ−1h)

pτ
−1h (1 − p)k . (D1)

with p = (1 + τα)−1. The limiting probabilities follow by a Taylor series expansion about h = 0:

P(∆N(t) = 0|N(t) = n) = pτ
−1h = 1 + τ−1 log (p)h + o(h)

P(∆N(t) = k|N(t) = n) =

(
τ−1h + o(h)

)
k

×
(
1 + τ−1 log (p)h + o(h)

)
(1 − p)k

=
τ−1 (1 − p)k

k
h + o(h), for k > 0. (D2)

To derive (D2) from (D1) we use the result

G(η + k)
k!G(η)

= k!−1(η + k − 1) × (η + k − 2) × . . . × (η + 2) × (η + 1) × (η)

=

k−1∑
j=0

k!−1φ jh j × η = k−1η +

k−1∑
j=1

k!−1φ jh j+1τ−1

= k−1η + o(h),
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with η = τ−1h. Recalling that p = (1 + τα)−1, the moments can be derived from standard results:

E[∆N(t)|N(t) = n] =
τ−1h(1 − p)

p
= (1 + τα)τ−1h − τ−1h = αh

V[∆N(t)|N(t) = n] =
τ−1h(1 − p)

p2 = (1 + τα)αh.

Proof of Proposition 5 (binomial gamma process). Since {N(t)} is the counting process associated with a conditional
linear death process, the increment process is binomial with parameters size d0 − n and event probability Π(t) =

1 − e−δ∆Γ(t). Writing ñ = d0 − n, we have

P(∆N(t) = k|N(t) = n,∆Γ(t)) =

(
ñ
k

)
Π(t)k(1 − Π(t))ñ−k,

for k ∈ {0, 1, . . . , ñ}. We integrate out the continuous-time gamma noise using the fact that δ∆Γ(t) follows a gamma
distribution with mean δh and variance δ2τh (i.e., shape parameters a = hτ−1 and b = δ−1τ−1). We complete the
resulting incomplete gamma density making use of the multinomial theorem as follows

P(∆N = k|N(t) = n) =

∞∫
0

(
ñ
k

)[
1 − e−x]k[e−x]ñ−k xa−1e−xbba

G(a)
dx

=

(
ñ
k

) ∞∫
0

[ k∑
j=0

(
k
j

)
(−e−x)k− j

]
e−x(ñ−k) xa−1e−xbba

G(a)
dx

=

(
ñ
k

) ∞∫
0

k∑
j=0

(
k
j

)
(−1)k− je−x(ñ− j) xa−1e−xbba

G(a)
dx

=

(
ñ
k

) k∑
j=0

(
k
j

)
(−1)k− j ba

(b + ñ − j)a ×

∞∫
0

xa−1e−x(b+ñ− j)(b + ñ − j)a

G(a)
dx

=

(
ñ
k

) k∑
j=0

(
k
j

)
(−1)k− j

(
1 + δτ(ñ − j)

)−hτ−1

for k ∈ {0, . . . , ñ}. The limiting probabilities follow by a Taylor series expansion about h = 0:

P(∆N(t) = 0|N(t) = n) =
(
1 + δτñ

)−hτ−1
= 1 − τ−1 ln

(
1 + δτñ

)
h + o(h)

P(∆N(t) = k|N(t) = n) =

(
ñ
k

) k∑
j=0

(
k
j

)
(−1)k− j

(
1 − τ−1 ln

(
1 + δτ(ñ − j)

)
h + o(h)

)

=

(
ñ
k

) k∑
j=0

(
k
j

)
(−1)k− j+1τ−1 ln

(
1 + δτ(ñ − j)

)
h + o(h),

for k ≥ 1, since by the binomial theorem
k∑

j=0

(
k
j

)
(−1)k− j = (1 − 1)k = 0. The moments are

E[∆N(t)|N(t) = n] = ñE[Π(t)|N(t) = n] = ñE[1 − e−δ∆Γ(t)|N(t) = n] (D3)
V[∆N(t)|N(t) = n] = V[ñΠ(t)|N(t) = n] + E[ñΠ(t)(1 − Π(t))|N(t) = n]

= E[∆N(t)|N(t) = n] + ñ
[
ñV[Π(t)|N(t) = n] − E[Π2(t)|N(t) = n]

]
(D4)
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Let Y = δ∆Γ(t). To obtain a closed-form solution for the binomial gamma process, where the probability of death is
Π(t) = 1−e−δ∆Γ(t), we need E[e−Y ], V[e−Y ] and E[(1−e−Y )2], which we can get using the moment generating function
E[ezY ] = (1 − zδτ)−τ

−1h for zδτ < 1 and h, λ, τ > 0. A Taylor expansion around h = 0 then gives

E[e−Y ] = (1 + δτ)−h/τ

= 1 − τ−1 ln(1 + δτ)h + o(h)
V[e−Y ] = E[e−2Y ] − E[e−Y ]2 = (1 + 2δτ)−h/τ − (1 + δτ)−2h/τ

= (1 − τ−1 ln(1 + 2δτ)h + o(h)) − (1 − τ−1 ln
(
(1 + δτ)2)h + o(h))

= τ−1 ln
( (1 + δτ)2

1 + 2δτ

)
h + o(h))

E[(1 − e−Y )2] = 1 − 2(1 − τ−1 ln(1 + δτ)h + o(h)) + (1 − τ−1 ln(1 + 2δτ)h + o(h))

= τ−1 ln
( (1 + δτ)2

1 + 2δτ

)
h + o(h).

Plugging these results in the moment expressions in (D3,D4) gives

E[∆N(t)|N(t) = n] = ñτ−1 ln(1 + δτ)h + o(h)
V[∆N(t)|N(t) = n] = ñτ−1 ln (1 + δτ)h +

+ ñτ−1
[(

ñ − 1
)

ln
( (1 + δτ)2

1 + 2δτ

)]
h + o(h).

Since (1+δτ)2

1+2δτ > 1 for δτ > 0, it follows that the process is over-dispersed for ñ > 1 and equi-dispersed for ñ = 1.

Proof of Proposition 7 (bivariate binomial gamma process). Letting ñi = d0i − ni for i = 1, 2, it follows by indepen-
dence of {M1(t)} and {M2(t)} that

P(∆Ni(t) = ki, |Ni(t) = ni,∆Γ(t)) =

(
ñ1

k1

)(
ñ2

k2

)
Π(t)k1+k2 (1 − Π(t))ñ1+ñ2−k1−k2 ,

for ki ∈ {0, 1, . . . , ñi}. The increment probabilities and transition rates follow respectively from integrating out the
continuous-time gamma noise as in the univariate case and from the same Taylor expansions derived in detail above
in the proof of proposition 5 in this appendix. The result that the marginal transition rates, increment probabilities and
infinitesimal moments are the same as those of the binomial gamma process follows again by independence of {M1(t)}
and {M2(t)}. Regarding the infinitesimal covariance result, work conditionally on Ni(t) = ni and define the random
variable

cov [∆N1(t),∆N2(t)|Π(t)] ≡ E [∆N1(t)∆N2(t)|Π(t)] − E [∆N1(t)|Π(t)] E [∆N2(t)|Π(t)]

Then, noting that cov [∆N1(t),∆N2(t)|Π(t)] is degenerate and equal to zero when {M1(t)} and {M2(t)} are independent,
it follows that

cov [∆N1(t),∆N2(t)] = cov [E [∆N1(t)|Π(t)] , E [∆N2(t)|Π(t)]] + E [cov [∆N1(t),∆N2(t)|Π(t)]]
= cov [ñ1Π(t), ñ2Π(t)]
= ñ1ñ2V[Π(t)]
= ñ1ñ2

(
(1 + 2δτ)−h/τ − (1 + δτ)−2h/τ

)
= ñ1ñ2

(
τ−1 ln

( (1 + δτ)2

1 + 2δτ

)
h + o(h)

)
where the expression for V[Π(t)] was derived above in the proof of proposition 5 in this appendix.

Proof of Proposition 6 (negative binomial gamma process). Since {N(t)} is a conditional linear birth process, the in-
crement process is negative binomial with parameters being the number of failures n and the failure probability
Π(t) = e−β∆Γ(t), i.e.,

P(∆N(t) = k|N(t) = n,∆Γ(t)) =

(
n + k − 1

k

)
Π(t)n (1 − Π(t))k ,
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for k ∈ N. Following a derivation similar to that of the binomial gamma processes of Proposition 5, with a = hτ−1 and
b = δ−1τ−1, we have

P(∆N = k|N(t) = n) =

∞∫
0

(
n + k − 1

k

)[
e−x]n[1 − e−x]k xa−1e−xbba

G(a)
dx

=

(
n + k − 1

k

) ∞∫
0

[ k∑
j=0

(
k
j

)
(−e−x)k− j

]
e−xn xa−1e−xbba

G(a)
dx

=

(
n + k − 1

k

) k∑
j=0

(
k
j

)
(−1)k− j

(
1 + bτ(n + k − j)

)−hτ−1

The limiting probabilities follow by a Taylor series expansion about h = 0 like in the proof of Proposition 5. The
moments can be found as follows. Consider the odds of a birth Θ(t) =

1−Π(t)
Π(t) given the probability of a birth 1 − Π(t).

Then

E[∆N(t)|N(t) = n] = nE[Θ(t)|N(t) = n] = nE[eβ∆Γ(t) − 1|N(t) = n]
V[∆N(t)|N(t) = n] = V[nΘ(t)|N(t) = n] + E[nΘ(t)(1 + Θ(t))|N(t) = n]

= E[∆N(t)|N(t) = n] + n
[
nV[Θ(t)|N(t) = n] + E[Θ2(t)|N(t) = n]

]
Let Y = ρ∆Γ(t). Then, Y follows a gamma distribution with mean βh and variance β2τh. To obtain a closed-form
solution for the binomial gamma process, where the odds of a birth is Θ(t) = eβ∆Γ(t) − 1, we need E[eY ], V[eY ]
and E[(eY − 1)2], which we can get using the moment generating function E[ezY ] = (1 − zδτ)−τ

−1h for zδτ < 1 and
h, λ, τ > 0. Via a Taylor expansion around h = 0, we obtain

E[eY ] = (1 − βτ)−h/τ

= 1 − τ−1 ln(1 − βτ)h + o(h)
V[eY ] = E[e2Y ] − E[eY ]2 = (1 − 2βτ)−h/τ − (1 − βτ)−2h/τ

=
{
1 − τ−1 ln(1 − 2βτ)h + o(h)

}
−

{
1 − τ−1 ln

(
(1 − βτ)2)h + o(h)

}
= τ−1 ln

( (1 − βτ)2

1 − 2βτ

)
h + o(h)

E
[
(eY − 1)2] = 1 − 2

{
1 − τ−1 ln(1 − βτ)h + o(h)

}
+

{
1 − τ−1 ln(1 − 2βτ)h + o(h)

}
= τ−1 ln

( (1 − βτ)2

1 − 2βτ

)
h + o(h).

Note that we require that 2τβ < 1. Plugging this into the moment expressions gives

E[∆N(t)|N(t)n = n] = nτ−1 ln
( 1
1 − βτ

)
h + o(h)

V[∆N(t)|N(t) = n] = nτ−1 ln
( 1
1 − βτ

)
h +

+ nτ−1
[(

n − 1
)

ln
( (1 − βτ)2

1 − 2βτ

)]
h + o(h).

Since (1−βτ)2

1−2βτ > 1 for βτ > 0 and 2τβ < 1, it follows that the process is also over-dispersed for n > 1 and equi-dispersed
for n = 1.

Proof of Proposition 8 (binomial beta process). Mh(h) − Mh(0) given Mh(0) = m is binomial with parameters size
d0 − m and death probability Π1, i.e., setting m̃ = d0 − m, we have

P(Mh(h) − Mh(0)=k|Mh(0)=m,Π1) =

(
m̃
k

)
(Π1)k(1 − Π1)m̃−k,
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for k ∈ {0, 1, . . . , m̃}. We integrate out the beta noise using the fact that Mh(h) − Mh(0) conditional on Mh(0) = d0 −m
has a beta binomial distribution with the corresponding parameters. The beta binomial probability mass function of
Mh(h) − Mh(0) given Mh(0) = m is

P(Mh(h) − Mh(0)=k|Mh(0)=m) =

=

(
m̃
k

)
G(a + b)G(k + a)G(m̃ − k + b)

G(a)G(b)G(a + b + m̃)
(D5)

=

(
m̃
k

)G(a + b)G(a)G(b)G(k)aG(c+m̃−k)
G(c)

G(a + b)G(a)G(b)G(c+m̃)
G(c)

+ o(h) (D6)

=

(
m̃
k

)
G(k)G(c + m̃ − k)

G(c + m̃)
cδh + o(h), (D7)

for k ∈ {1, . . . , m̃}. For k = m̃, (D6) follows by G(k + a) = aG(a)G(k) + o(a), which holds for k ≥ 1. For k < m̃, an
application of Lemma D1 in this appendix is also needed. Specifically, using Lemma D1 with i = m̃ − k, it follows
that

G(m̃ − k + b) =
{G(c + m̃ − k)

G(c)
+ O(h)

}
G(b), (D8)

and, since a + b = c,

G(a + b + m̃) = G(c + m̃) (D9)

=
G(c + m̃)

G(c)
G(c)

=
G(c + m̃)

G(c)
G(a + b).

Plugging (D8) and (D9) into (D5) gives (D6). Then, using a = cδh + o(h) and canceling terms gives (D7), which
corresponds to the transition rates. The moments of a beta binomial distribution are a standard result. Since a =

c(1 − e−δh) and b = ce−δh and c = ω−1(m̃ − 1) − 1 for m̃ > 1, Taylor expansions around h = 0 then give

E[Mh(h) − Mh(0)=k|Mh(0)=m] = m̃
a

a + b
= m̃δh + o(h)

V[Mh(h) − Mh(0)=k|Mh(0)=m] = ñ
ab

(a + b)2

ñ + a + b
1 + a + b

= m̃(1 − e−δh)e−δh
ñ + c
c + 1

= m̃δh (1 + ω) + o(h),

for m̃ > 1 and it follows that the binomial beta process is over-dispersed for ω > 0. If m̃ = 1 the process is equi-
dispersed as

V[Mh(h) − Mh(0)=k|Mh(0)=m] = m̃
ab

(a + b)2

= m̃δh + o(h).

The infinitesimal moments of the MCP defined by these limiting transition probabilities can be derived from the
moments above because the sums in the conditional moments have a finite number terms d0 − m and the h limits can
therefore be passed inside these moments.

Lemma D1. For a = c(1 − e−δh), b = ce−δh, c > 0 and i ∈ {1, 2, . . . },

G(b + i) =
{G(c + i)

G(c)
+ O(h)

}
G(b).
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Proof. Since b = c − a, and by the definition of the gamma function, for i ≥ 1,

G(b + i) = (c − a + (i − 1)) × (c − a + (i − 2)) × · · · × (c − a) ×G(b)
=

{
(c + (i − 1)) × (c + (i − 2)) × · · · × (c) + O(h)

}
G(b)

=
{ i−1∏

j=0

(c + j) + O(h)
}
G(b)

=
{G(c + i)

G(c)
+ O(h)

}
G(b).

D3. Equi-dispersion of mixed simple Markov counting processes

In this section, we present a proof of Theorem 2.

Proof of Theorem 2 (sufficient condition for mixed Markov infinitesimal equi-dispersion). We proceed similarly to the
proof of Theorem 1. Now that {N(t)} is a mixed MCP, the bound Λ̄∗(t) which features in P1∗ and P2∗ is stochastic both
because of its dependence on {N(t)} and its dependence on the random variable M. All probabilities and expectations
in the remainder of this proof are conditional on N(t) = n (in addition to other conditioning, where appropriate). The
result for the mean follows as in Theorem 1 by dominated convergence but the dominated functions are now

E
[
Λ̄∗(t)

(
1 − exp{−hΛ̄∗(t)}

)∣∣∣∣M = m
]
≤ E

[
Λ̄∗(t)

∣∣∣M = m
]
,

for all m, and the dominating function has a finite integral since E
[
E
[
Λ̄∗(t)|M

]]
= E

[
Λ̄∗(t)

]
< ∞. Then,

lim
h↓0

E[E[hΛ̄∗(t)(1 − exp{−hΛ̄∗(t)})|M]]
h

= E[lim
h↓0

Λ̄∗(t)(1 − exp{−hΛ̄∗(t)})] = 0.

The result for the variance follows again in the same lines as for the non-mixing case, i.e.

E[(∆N(t))2 I{∆N(t) > 1} ] = E[E[(∆N(t))2 I{∆N(t) > 1} |M]]
≤ 2h2E[E[Λ̄∗ 2(t)|M]] = o(h),

by the assumption that E[Λ̄∗ 2(t)] < ∞. These two results show that the same terms that vanished in Theorem 1 vanish
now as well. Then,

E[∆N(t)] = E[ I{∆N(t) = 1} ] + o(h) = E[E[ I{∆N(t) = 1} |M]] + o(h)
= E[Λ(n)φ∗(h)] + o(h) (D10)

where (D10) follows by Lemma D3. Here

φ∗(h) =


exp{−hΛ(n + 1)}h if Λ(n) = Λ(n + 1)
exp{−hΛ(n + 1)} − exp{−h(Λ(n)}

Λ(n) − Λ(n + 1)
if Λ(n) , Λ(n + 1)

Taking limits, as in (D21), gives the desired result via dominated convergence:

lim
h↓0

E[∆N(t)]
h

= lim
h↓0

E
[
Λ(n)

φ∗(h)
h

]
= E

[
Λ(n) + lim

h↓0

oM(h)
h

]
= E[Λ(n)],

where it follows analogously to (D12) that φ∗(h)/h ≤ 1 and thus Λ(n) dominates Λ(n)φ∗(h)/h with E[Λ(n)] ≤
E[Λ̄∗(t)] < ∞. Here, as in Lemma D3, oM(h) terms are standard o(h) terms for every fixed valued m of the ran-
dom variable M. The same argument gives lim

h↓0
h−1E[(∆N(t))2] = E[Λ(n)] and the same dispersion results as in

Theorem 1 follow.
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D4. Sufficient and necessary conditions for equi- and over-dispersion of Markov counting systems

In this section, we generalize the results of the univariate Section 2 to the multivariate Markov counting system
framework of Section 4. Analogously to Section 2, define the rate function of a MCS to be

λ(x) ≡ lim
h↓0

1 − P(∆Ni j = 0 for all (i, j)|X(t) = x)
h

.

Again we restrict ourselves to stable and conservative processes so that λ(x) =
∑

k q(x, k) < ∞ for all x. We introduce
two regularity conditions, analogous to those of Section 2. Here, the stochastic bound on the rate function is now

Λ̄i j(t) ≡ sup
t≤s≤t+h̄

λ
(
X(s)

)
.

Since, unlike in the result in the univariate section, we are now allowing for compound processes, we also need a
stochastic bound on the size of increments of the counting processes,

Z̄i j(t) ≡ sup
t≤s≤t+h̄

dNi j(s).

Then, the conditions are

P3. For each t, x and i , j there is some h̄ > 0 such that E[Z̄i j(t)Λ̄i j(t)|X(t) = x] < ∞.

P4. For each t, x and i , j there is some h̄ > 0 such that V[Z̄i j(t)Λ̄i j(t)|X(t) = x] < ∞.

Properties P3 and P4 are multivariate extensions of P1 and P2 respectively, requiring that the i j-marginal counting
processes do not have an explosive behavior. In particular, P3 and P4 hold for simple birth-death processes with linear
birth and death rates. When P3 and P4 hold, Theorem D2 shows it is sufficient and necessary that all i j-marginal
processes {Ni j(t)} associated with {X(t)} be simple for the latter to be infinitesimally equi-dispersed. Sufficiency
follows because for simple i j-marginal processes {Ni j(t)},

Di j
dX(x) =

∑
k k2qi j(x, k)∑
k kqi j(x, k)

=
qi j(x, 1)

qi j(x, 1)
= 1.

Necessity follows because for compound i j-marginal processes {Ni j(t)},

Di j
dX(x) =

∑
k k2qi j(x, k)∑
k kqi j(x, k)

> 1

since k2 > k for k > 1. Sufficiency and necessity of compoundness for over-dispersion follow analogously. In this
appendix, we define qi j(x, `) ≡

∑
k:ki j=` q(x, k) to be the marginal transition rate function for the i j-type transition

of a MCS. This notation generalizes and supersedes the notation in the main text, where qi j(x, `) was defined to be
q(x, 1i j`). The previous, simpler notation was adequate for the main text since there we focused on compound and
simple processes for which simultaneous transitions of different types were not allowed.

Theorem D2 (infinitesimal moments of a MCS). Let {X(t)} be a time homogeneous, stable and conservative Markov
counting system with associated multivariate counting process {N(t)} as defined in the main text by (10) and (11).
Supposing (P3), the infinitesimal mean of {Ni j(t)} is µi j

dX(x) =
∑

k kqi j(x, k). Supposing (P4), its infinitesimal variance

is σ2 i j
dX (x) =

∑
k k2qi j(x, k).

Proof. Let {N̄i j(t)} be a conditional compound Poisson process with event rate Λ̄(t) ≡ Λ̄i j(t) and degenerate jump
distribution with mass one at Z̄(t) ≡ Z̄i j(t). All probabilities and expectations in the remainder of this proof are
conditional on N(t) = n (in addition to other conditioning, where appropriate). Let S be the event that there is exactly
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one transition time occurring in the interval [t, t + h], as in Lemma D3. This transition may involve increments in one
or more of the {Ni j(t)} processes, and these increments may be of size one or more. Then,

E[∆Ni j(t)] = E[∆Ni j(t) I{S } ] + E[∆Ni j(t) I{S c} ]. (D11)

Unlike in Theorem 1, the term corresponding to one single transition time is not immediate and requires approximating
P(S |X(t) = x). Lemma D3 provides us with such a result, namely P(S |X(t) = x) = hλ(x) + o(h). Letting S i j be
the event that there is exactly one transition time occurring in the interval [t, t + h] and that this transition involves
increments in the {Ni j(t)} process (and also possibly in other processes), we write

E[∆Ni j(t) I{S } ] = E[∆Ni j(t)|S i j, X(t) = x] × P(S i j|S , X(t) = x) × P(S |X(t) = x)

=
∑

k

k
qi j(x, k)∑

k
qi j(x, k)

×

∑
k

qi j(x, k)

λ(x)
×

[
hλ(x) + o(h)

]
= h

∑
k

kqi j(x, k) + o(h).

Analogously to Theorem 1, we proceed to bound the second term to show the desired result. Since ∆Ni j(t) is stochas-
tically smaller than ∆N̄i j(t),

E[∆Ni j(t) I{S c} ] ≤ E[∆N̄i j(t) I{S c} ]

= E
[
E[∆N̄i j(t) I{S c} |Λ̄(t), Z̄(t)]

]
Using (D11) with Ni j(t) replaced by N̄i j(t) and since E[∆N̄i j(t)|Λ̄(t), Z̄(t)] = Z̄(t)hΛ̄(t) and E[∆N̄i j(t) I{S } |Λ̄(t), Z̄(t)] =

Z̄(t)hΛ̄(t) exp{−hΛ̄(t)}, it follows that

E[∆Ni j(t) I{S c} ] ≤ E
[
Z̄(t)hΛ̄(t) − Z̄(t)hΛ̄(t) exp{−hΛ̄(t)}

]
= E

[
Z̄(t)hΛ̄(t)(1 − exp{−hΛ̄(t)})

]
.

As in Theorem 1, it follows by dominated convergence, since z̄λ̄
(
1 − exp{−hλ̄}

)
≤ z̄λ̄ and E[Z̄(t)Λ̄(t)] is finite, that

lim
h↓0

E
[
Z̄(t)hΛ̄(t)

(
1 − exp{−hΛ̄(t)}

)]
h

= E
[
lim
h↓0

Z̄(t)Λ̄(t)
(
1 − exp{−hΛ̄(t)}

)]
= 0.

Therefore, E[∆Ni j(t) I{S c} ] = o(h) and the result for the mean follows. Replacing first by second moments, the result
for the variance follows since

E[(∆Ni j(t))2 I{S c} ] ≤ E[(∆N̄i j(t))2 I{S c} ]

= E
[
E[(∆N̄i j(t))2 I{S c} |Λ̄(t), Z̄(t)]

]
= E[Z̄2(t)hΛ̄(t) + Z̄2(t)h2Λ̄2(t) − Z̄2(t)hΛ̄(t) exp−hΛ̄(t)]
≤ E[2Z̄2(t)h2Λ̄2(t)] = o(h),

since E[Z̄2(t)Λ̄2(t)] is assumed to be finite.

To complete the proof of Theorem D2, we require the following lemma. This technical result is similar to, but
slightly different from, standard results on Markov chains. Equation (D13) was shown, for example, by [32, page
492]. However, the inequality in (D12) is, to our knowledge, new.

Lemma D3 (probability of a single event time in Markov counting systems). Let {X(t)} be a time homogeneous,
stable and conservative Markov counting system with associated multivariate counting process {N(t)} as defined in
the main text by (11) and (10). Consider a starting time t and let U be the time between t and the first event time and
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V be the time between t + U and the second event time. Let S be the event that there is exactly one transition time
occurring in the interval [t, t + h]. This transition may involve increments in one or more of the {Ni j(t)} processes, and
these increments may be of size one or more. Then, letting λU ≡ λ(x) be the rate function of {X(t)} during [t, t + U]
and ΛV ≡ λ

(
X(t + U)

)
be this conditional rate function during [t + U, t + U + V],

P(S |X(t) = x,ΛV ) = λUφ(h) ≤ λUh (D12)

where

φ(h) ≡
{

e−hΛV h if λU = ΛV
e−hΛV −e−hλU

λU−ΛV
if λU , ΛV

and
P
(
S |X(t) = x

)
= hλ(x) + o(h). (D13)

Proof. Start by fixing the random variable ΛV at a given constant, say λV . Given the Markov property, for the starting
time t, the densities of the exponential inter-event times are fU(u) = λUe−uλU for u > 0 and fV (v) = λVe−vλV for v > 0.
Then,

P(S |X(t) = x) = P(U < h,U + V > h) = P(U < h,V > h − U)

=

h∫
0

∞∫
h−u

fU,V (u, v)dvdu =

h∫
0

∞∫
h−u

λUe−uλUλVe−vλV dvdu

=

h∫
0

λUe−uλUλVdu

∞∫
h−u

e−vλV dv =

h∫
0

λUe−uλU e−(h−u)λV du

= λUe−hλV

h∫
0

e−u(λU−λV )du. (D14)

If the event rate is not changed by the first event happening (like it happens in a Poisson process but unlike in linear
birth or death processes), then we can write λU = λV = λ in (D14) and

P(S |X(t) = x, λV ) = λUe−hλV h (D15)
= λh

(
1 − λh + o(h)

)
= λh + o(h). (D16)

If λU , λV , then from (D14)

P(S |X(t) = x, λV ) = λUe−hλV

[1 − e−h(λU−λV )

λU − λV

]
= λU

e−hλV − e−hλU

λU − λV
(D17)

= λU
1 − hλV + o(h) − 1 + hλU + o(h)

λU − λV

= λUh
λU − λV

λU − λV
+ o(h)

= λUh + o(h). (D18)

Combining (D15) and (D17), replacing λV by ΛV and conditioning on ΛV gives the equality in (D12). The inequality
in (D12) follows directly for the case λU = ΛV since exp{−hΛV } ≤ 1. For λU , ΛV , consider f (x) = exp{−x} with
x ∈ R+. The mean value theorem asserts that, for some non-negative real z ∈ [x, y],

f (y) = f (x) + (y − x)d f /dx(z). (D19)
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Rearranging (D19), we obtain
exp{−y} − exp{−x}

(x − y)
= exp{−z}. (D20)

The inequality in (D12) follows by setting x = hλU and y = hΛV in (D20), noting that exp{−z} ∈ [0, 1]. We now
complete the proof by showing that equation (D13) follows from (D16) and (D18) via dominated convergence, since

lim
h↓0

h−1P(S |X(t)=x) = lim
h↓0

h−1E[P(S |X(t) = x,ΛV )] = E[lim
h↓0

h−1(λUh + oΛV (h))] = λU . (D21)

Here, oΛV (h) terms are standard o(h) terms for every fixed valued λV of the random variable ΛV . To justify passing
the h limit inside the expected value, note that P(S |X(t)=x)/h is dominated by λU from (D12).

D5. Construction of over-dispersed Markov counting systems

Extending the results of Section 3 to the multivariate Markov counting systems of Section 4 requires consid-
ering infinitesimally over-dispersed MCS models. A direct extension of Section 3 could lead to subordination of
multivariate infinitesimally equi-dispersed processes. However, in Section 4, we have already introduced the idea of
stacking blocks of small dimension to create larger systems. The key question is whether processes built following
this approach inherit the infinitesimal properties of the smaller blocks. Theorem D2 from Section D4 gives sufficient
conditions for this, which in turn implies that the system will be over-dispersed if built with over-dispersed univariate
blocks. In this section we give an additional example of the ‘building block’ strategy by constructing in Proposi-
tion D4 an infinitesimally over-dispersed birth-death process by stacking the transition rates of the binomial gamma
and of the negative binomial gamma process of Section 3. Then, we check that infinitesimal dispersion of the building
processes is retained by this birth-death process and by the models from the SEIR example of Section 4 by checking
that P3 and P4 hold.

Proposition D4 (infinitesimally over-dispersed birth-death process). Consider one compartment C = {Y} and two
auxiliary nodes A = {B,D} with allowed transitions T = {(B,Y), (Y,D)} representing births (B → Y) and deaths
(Y → D). Based on these, define the compound Markov counting system {Y(t)} by

Y(t) = Y(0) + NBY (t) − NYD(t) (D22)

and by birth transition rates, for k = {kBY , 0} with kBY≥ 1,

q(y, k) ≡ qBY (y, kBY ) =

(
y + kBY − 1

kBY

) kBY∑
j=0

(
kBY

j

)
(−1)k− j+1(τB)−1 ln

(
1 + βτB(y + kBY − j)

)
and by death transition rates, for k = {0, kYD} with kYD ∈ {0, . . . , y},

q(y, k) ≡ qYD(y, kYD) =

(
y

kYD

) kYD∑
j=0

(
kYD

j

)
(−1)kYD− j+1(τD)−1 ln

(
1 + δτD(y − j)

)
for y > 0 and zero otherwise. Then, the infinitesimal dispersion of such Markov counting system is given by

DBY
dY (y) = 1 + (y − 1)

[
2 ln(1 − βτB) − ln(1 − 2βτB)

− ln(1 − βτB)

]
DYD

dY (y) = 1 + (y − 1)
[
2 ln(1 + δτD) − ln(1 + 2δτD)

ln(1 + δτD)

]
.

for 2βτB < 1 and provided Y(0) > 0. Hence, the i j-marginals of the counting process {N(t)} associated to the MCS
{Y(t)} are infinitesimally over-dispersed for y > 1 and equi-dispersed for y = 1.
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Proof. The results follow by Theorem D2. Hence, we must check (P3) and (P4), which we do by finding stochastic
bounds for the rate function λ(X(t)) and for the {dNi j(t)} processes. Then, we check existence of the moments for
those bounds. In this case, the rate function is

λ(Y(t)) =
∑

k

qBY (Y(t), k) +
∑

k

qYD(Y(t), k)

= (τB)−1 ln
(
1 + βτBY(t)

)
+ (τD)−1 ln

(
1 + δτDY(t)

)
≤ (β + δ)Y(t). (D23)

By (D22) and (D23), it is possible to bound the supremum of the rate function by

Λ̄BY (t) = Λ̄YD(t) ≤ (β + δ)
(
Y(t) +

(
NBY (t + h̄) − NBY (t)

))
,

since the most {Y(t)} can be in [t, t + h̄] is the starting value plus all births that occurred during that interval. Similarly,
it is possible to bound the supremum of the marginal BY and YD jumps by

Z̄BY (t) ≤ NBY (t + h̄) − NBY (t) ≤ Z̄YD(t) and Z̄YD(t) ≤ Y(t) +
(
NBY (t + h̄) − NBY (t)

)
,

since the birth process can jump at most by all the births occurred in [t, t + h̄] and the death process at most by the
starting population plus all those births. Since all these are non-negative,

E
[
Z̄i j(t)Λ̄i j(t)|Y(t) = y

]
≤ E

[
(β + δ)

(
Y(t) +

(
NBY (t + h̄) − NBY (t)

))2
|Y(t) = y

]
Then, for both (P3) and (P4) to hold we need to show finiteness of the fourth conditional moment of NBY (t+h̄)−NBY (t).
Letting S BY be the event that only transitions of the type BY (and none of type YD) occur in [t, t + h̄],

E
[
NBY (t + h̄) − NBY (t)|Y(t) = y

]
=

∑
kP

(
NBY (t + h̄) − NBY (t) = k|Y(t) = y

)
≤

∑
kP

(
NBY (t + h̄) − NBY (t) = k|Y(t) = y, I{S BY } = 1

)
< ∞ (D24)

where (D24) follows because the probability of k births given that YD transitions have not occurred will not be smaller
than otherwise, since those transitions make the birth rate function smaller and move mass in the jump distribution
towards zero. To see that (D24) is finite note that the times between transitions, say Ti for i ≥ 1, occurring in {Y(t)} are
exponentially distributed with rate λ(y) = (τB)−1 ln

(
1+βτBy

)
+ (τD)−1 ln

(
1+δτDy

)
. Now, it is a well known result that

Ti has the same distribution as the minimum of TBY,i and TYD,i, where these two random variables are independent,
exponential random variables with rates (τB)−1 ln

(
1 + βτBy

)
and (τD)−1 ln

(
1 + δτDy

)
. Then, conditionally on S BY ,

(D24) is the expected value of a negative binomial gamma random variable. (P3) and (P4) hold by finiteness of the
fourth moment of the negative binomial gamma distribution.

Note that taking τB → 0 or τD → 0 leads to infinitesimal equi-dispersion in the birth or death process respectively.
If both these limits are taken, then {Y(t)} becomes a standard, infinitesimally equi-dispersed linear birth-death process.
We proceed to check that the models in the SEIR example inherit the dispersion of the building blocks by finding
bounds, analogous to those of the proof of Proposition D4. Since our results are for time-homogeneous processes, we
consider the time-homogeneous version, i.e. νBS (t) = νBS and β(t) = β. In this case, letting the whole population at
time t be P(t) = S (t) + I(t) + E(t) + R(t), the rate function is

λ(X(t)) = qBS (X(t), k) +
∑

k

qS E(X(t), k) + qEI(X(t), k) + qIR(X(t), k) +
∑
c∈C

qcD(X(t), k)

= νBS +
∑

k

qS E(X(t), k) + νEI E(t) + νIRI(t) + νDP(t).

If the standard simple MCS is considered,
∑
k

qS E(X(t), k) = β
(
I(t) + γ

)
S (t). If the compound MCS is considered,∑

k
qS E(X(t), k) = τ−1

S E ln
(
1 + τS Eβ

(
I(t) + γ

)
S (t)

)
≤ β

(
I(t) + γ

)
S (t). In both cases,

λ(X(t)) ≤ νBS +
(
β + βγ + νEI + νIR + νD

)
P2(t).
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Tighter bounds can be derived, but are not needed for our purposes. Bound the supremum of the rate function by

Λ̄i j(t) ≤ νBS +
(
β + βγ + νEI + νIR + νD

)(
P(t) +

(
NBS (t + h̄) − NBS (t)

))2
.

Similarly, bound the supremum of the marginal jumps by

Z̄i j(t) ≤ P(t) +
(
NBS (t + h̄) − NBS (t)

)
.

Since all these are non-negative,

E
[
Z̄i j(t)Λ̄i j(t)|X(t) = x

]
≤ E

[
νBS

(
P(t) +

(
NBS (t + h̄) − NBS (t)

))
+

+
(
β + βγ + νEI + νIR + νD

)(
P(t) +

(
NBS (t + h̄) − NBS (t)

))3∣∣∣∣X(t) = x
]

Then, (P3) and (P4) will follow if we establish finiteness of the sixth conditional moment of NBS (t + h̄) − NBS (t).
Finiteness follows by

E
[
NBS (t + h̄) − NBS (t)|X(t) = x

]
= νBS h̄ < ∞. (D25)

To see why (D25) holds, note that, as in the birth-death process above, the inter-event times can be thought of as
being exponentially distributed with rate λ(x) or as the minimum of a collection of independent exponential random
variables, each one with rate corresponding to the sum of transition rates regarding a specific transition. In this case,
{NBS (t)} is a Poisson process with rate νBS both conditionally and unconditionally on only transitions of the type BS
happening in [t, t + h̄]. Then, (P3) and (P4) hold by finiteness of the sixth moment of the Poisson distribution. We do
not anticipate much difficulty in extending these results to a time-dependent context (e.g. letting νBS or β depend on
time as in Section 4) since the time-varying rates could be replaced in the bounds by their suprema.
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