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Abstract
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asymptotically distribution free tests. The weights can be optimally chosen to maximize the
power function when testing in the direction of local alternatives. The optimal test in this class
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recursive residuals in the projection of the residual autocorrelations on a certain score function.
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1. INTRODUCTION

Let {X;}° _ be a covariance stationary time series with zero mean such that
the filtered series

er=¢(B) Xy, t =0,+1,+2,. ..,

is a White Noise process, i.e. an uncorrelated process with zero mean and variance
0%, where ¢ is a prescribed function of the backshift operator B. We adopt the
normalization ¢ (0) = 1. The series X; might not be observable, as it happens when
X, are errors of a general regression model. The discussion of this case is postponed
to Section 4.

Given a data set {X;};_, , statistical inferences usually rely on a parametric spec-
ification of ¢, which is described by means of a class of functions indexed by para-
meters taking values in a suitable parameter space © C R?, say J = {p, : 0 € O},
so that ¢, (0) = 1 for all . The resulting statistical inferences are invalid when the

putative specification is incorrect. This is why testing the null hypothesis
Hy:peJ

is sorely needed before performing any statistical inference.

The null hypothesis of correct specification can be written as
Hy : py, (j) = 0 for all j > 1 and some 6 € O,

where py () = [T f(X) fy' (A) cos(Aj) dX is the autocorrelation function of the
residuals eg; = @y (B) X, t = 0,£1,..., f () = |p (™) |72 and fy (A) = |¢g (™) ‘72
are the underlying normalized spectral density of {X;},~ _ and its parametric spec-
ification counterpart, respectively, with [* log fo(A)d\ = [T log f(A)d\ = 0 for all
foeJ.

A vast majority of test statistics for time series model specification are func-

tions of some estimated residual autocorrelation (ERA) function, i.e. suitable es-
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timates of p, . Portmanteau test statistics are quadratic forms of an ERA vector,
e.g. Quenoville (1947), Box and Pierce (1970), Ljung and Box (1978) or Hosking
(1978). Lagrange Multiplier (LM) test statistics, obtained after imposing paramet-
ric restrictions to a time series model, are quadratic forms of weighted sums of
ERA vectors, e.g. Durbin (1970), Hosking (1978, 1980), or Robinson (1994) more
recently.

Sometimes it is possible to compute the residuals {eg:};_,, and p, (j) can be esti-
mated by the ERA, D, (7) = Yo (7) /Ao (0), Where 4, (j) = n™' 370, corcor—j,
Jj =0,1,..., is the sample autocovariance function of {4}, . The residuals are
often hard to compute, if not impossible, and it may be advisable to apply the
computationally much friendly autocorrelation estimates g, (j) = Y0 (J) /7o (0) ,

where

Ao (J QWZ]@G ) cos (jA\e), 7=0,1,..., (1)
n = [n/2], [a] being the integer part of a, and for generic sequences {V;};_,
and {U}7_,, Ivo (\) = (2nn) " S0, S0 Villexp {id; (t—0)}, j=1,...,7, s0
Ix (\;) = Ix x ()j) denotes the periodogram of {X;}; , evaluated at the Fourier
frequency \; = 2mj/n for positive integers j.

Henceforth, for the sake of motivation and notational economy, we shall not
distinguish between the alternative autocorrelation estimates, and we shall denote
by p,, either p,, or p,,. However, the different results presented in the paper will
be formally justified in the Appendix for both estimators.

Let us assume first that the hypothesis to be tested is simple, i.e. the value of 6,
is known under H,. The most popular test for testing Hy is the popular Box-Pierce’s

portmanteau test, which uses as test statistic BP,, (m) with

BP9 _nzpné )

where m must be chosen by the practltloner. This test is a compromise between the
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classical omnibus test based on Bartlett’s T}, and C), processes and the parametric
Lagrange Multiplier (LM) tests based on some restrictions on the parameters of a
more or less flexible specification. Among them, the ARFIM A (p, d, q) specification

is the most popular, with

a ®s(2)

12 (2) = (1 - Z) = 0= (5/7 d, 7)’)/7
’ Ey (2)
such that ®5(2) =1 — 12 —------ —0p2P and 5, (2) = 1 —nyz — -+ — 0,27 are

the autoregressive and moving average polynomials, respectively. In fact, BPy, (m)
is the LM test statistic when testing that m parameters of the autoregressive part
(001, - - -, Oom) Or the moving average part (1yy, . - ., 7o) equal zero. This is also the
LM statistic for testing that 619 = 0 in the Bloomfield’s (1973) exponential spectral
density specification
fa (A) = go, (A) exp <§£:01kcosAk> , 0= (0,0, (2)
k=1
for some 6, = (9'1079'20)/ and [7_log gg, (A) dA = 0 for all 6.
The Box-Pierce’s test belongs to the class of test statistics defined by quadratic

forms of weighted sums of residual autocorrelations of the form,

Wog (W) = Vg (W) g ()

with
n—1 -1/2 n—1
g (W) = n'/? (Zw (j)w (j)’) Zw () Puo (4) +

where w is a m x 1 weight function such that -7 w (j) w ( 4)' is positive definite

and for some generic K > 0
lw(@) <K j=12,.... (3)

Thus, BP,y (m) = V,g (w) with w (j) = (1{j:1}, e 1{j:m})/.



When w is scalar, Theorem 1 below provides a large sample justification for
the class of tests described by means of the Bernoulli random variable ¢y (w) =
1 (D0 (@)>2a 17 when testing at the « significance level, where 1;; is the indicator
function and z, is the (1 — a)-th quantile of the standard normal distribution.
When w is multivariate, tests are described by @5, (w) = 1 (W @)>xa } where
X2,o 18 the (1 — a)-th quantile of the chi-squared with m degrees of freedom. The
theorem refers to Class A of processes, defined in the Appendix. Class A allows for
a wide range of autocorrelation patterns in {X;};° _ , including long memory, and
imposes a martingale difference assumption on the white noise process {e;};~ _ .
This assumption is weaker than Gaussianity, or independence, which are usually
assumed in the time series goodness-of-fit testing literature. See Robinson (1994)
and Delgado, Hidalgo and Velasco (2005) for discussion. Theorem 1 also allows

to compute the efficiency of the tests in this class under the sequence of local

alternatives of the form

Hyy, : py, (J) = L\/‘%) + anrg‘]) for some 0, € O, (4)

where 7 and a,, can depend on 6, and are subject to conditions specified in Class L
defined in the Appendix. Let N,, and I,,, be the m-dimensional normal distribution

and identity matrix respectively.

Theorem 1 Assume that {X;},° € A. Under Hy, € L,

o0

- ~1/2
0 (&) = N (Zw () <j>') r()w () I

J=1

Thus, the corollary below justifies inferences based on ®j,, (w).

Corollary 1 Under conditions in Theorem 2 and Hy,,

W, (W) —a X (W (W),

where W (w) =372 r (j)w () <Z;‘;1w () w (j)/> Y w () r ()
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Thus the Pitman-Noether asymptotic relative efficiency of ®%, (w) is given by
W (w) /W (r), which is in [0, 1] since W (r) =372, r (7)* and W (w) is the sum of
squares of the projection of r on w. Thus, @, (r) is the most efficient test in its
class. When w is scalar, the asymptotic relative efficiency of ¢y, (w) reduces to the
squared correlation coefficient between w and r when 3 ™%, w (j) 7 (j) > 0, showing
that ¢pg, () is the most efficient test in its class. When 7%, w ()7 (j) < 0,
limy, o0 Pr (¢, (w) = 1) < a.

nbo

Parametric tests consist of assuming that ¢ = ¢, and testing the hypothesis,
H[) . (910 = O,

where 1 is a g;-valued subvector of 0y, ¢; < ¢, in the direction of the parametric

local alternative,
Hln 1010 = 7/ \/ﬁ

Testing such hypothesis is equivalent to test Hy versus Hy,, with r (j) = v'dyg, (J) ,

where

. [ e,
o (1) = 5z [ cos(0) 5 log fa (V)

assuming suitable smoothness restrictions on fy to be specified later. Henceforth,
we always assume that it is possible to interchange the integration and differen-
tiation operators. Then, if 01y and v are scalars, the one-sided test isgp,, (r) =
1 (g (si9m()drog )57} However, in parametric testing, two sided tests are required
when testing that a vector of parameters is equal to zero.

Parameters are unknown in practical situations and they must be estimated.
The corresponding ERA’s with estimated parameters are neither asymptotically
independent or distribution-free. This is why the asymptotic distribution of classical
Portmanteau test statistics is not well approximated by the distribution of a chi-

squared random variable, except when a large, though not too much, number of



sample autocorrelations is considered. In next sections we develop asymptotically
pivotal tests under these circumstances.

In Section 2 we propose a transformation of the weights which result in test
statistics converging to a standard normal under the null. We show that a new
Box-Pierce-type test based on a linear transformation of the ERA’s, belongs to
this class and is asymptotically distributed as a chi-squared using a fixed num-
ber of transformed ERA’s. These transformed ERA’s are, in fact, the recursive
least squares residuals of the projection of the original ERA’s on certain “score”
functions. Section 3 discusses the implementation of the test with regression resid-
uals. In Section 4, we illustrate the finite sample properties of our test by means
of a Monte Carlo experiment. Section 5 reports an application to the analysis of
real data concerning tree-ring widths measures and chemical process temperature

readings.

2. ASYMPTOTICALLY DISTRIBUTION FREE TESTS WITH
ESTIMATED PARAMETERS

In order to implement the test when 6y is unknown under the null, we need a
\/n-consistent estimator, 6,, say. Theorem 2 provides an asymptotic expansion of

the test statistics, which depends on the “score” function

T 0
4y (5) = 5 | cos () g log o ()

Notice that dy, (1) = —0py(-)/ 00]y_y, under Hy. The statement of Theorem 2
refers to Class B, which imposes some further mild restrictions on J to avoid some
pathological behaviour of dy, but allowing fairly flexible specifications, including
those exhibiting long-memory. Similar assumptions were also used by Delgado,
Hidalgo and Velasco (2005). Henceforth, it is assumed that the parameter estimator

0,, is v/n-consistent under the sequence of local alternatives Hy,.
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Theorem 2 Assume that {X;};° € A and J € B. Under Hy, € L,

n—1 n—1 n—1
> w () o, () =D w0 (1) Pagy () = On = 00) > w (§) dy, (§) + 0, (n7172).
j=1 j=1 Jj=1

Thus, asymptotically distribution-free tests can be obtained for any vector of

weight functions w using a sample dependent transformation w,, g, such that

—_

n—

Wno, (7)do, (j) = 0. (5)

<.
Il

Assuming that w and dy, are not perfectly collinear, the least squares residuals

Wn.p, satisfy (5) non trivially, where for any generic function g : Z — R,

G0 () = 9 () — do () (Zde(k)de(k)/) SSd(K)gk), j=12.... (6)

Theorem 3 Under the conditions in Theorem 2 and Hy, € L,

-1/2
1/) (wn Gn <Z Weo 00 Woo 00 (j),> Z d)ooﬂo (j) r (]) ) [m
j=1

We can justify inferences based on ®¢ (@ ,) with the next corollary.
Corollary 2 Under conditions in Theorem 2 and H 1ns
W, (@n0,) —d Xy (W (©Do0y)) -

Let 7,9 be the residual function where ¢ in (6) is replaced by r. Now, the rela-
tive efficiency of @5, (Wnye,) is given by W (Weo,0,) /W (Poo,0,) , Where W (Poo,9,) =
D 7oy Tooy () = > 27 (J) Tooy (7). Taking into account that Y 377 7 (5) Qoo (J) =
D o1 Too o () Weo 9 (J) , it is immediate that W, (75,6,) is also locally efficient rel-
atively to its class.

Testing the hypothesis Hy in the direction H;, is equivalent to test Hy versus
Hy, with r(j) = 'dig, (j) , where dg (j) = (dig (§)', dag (j )’)/ is conformable with

respect to 0 = (#,05)" . Then, using a restricted \/n-consistent estimate 6, of 6, so
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N / R / .
that <0n — 90) d@ () = (82,n — 92,0> dgg () — n_l/z’)//dw () under Hlm the optimal

weights are estimated by 7, 5 () =9 dm@n (7), where

-1
dn10 (j) = dio (] Zdw ) dag (k (Zdze ) dag (K I> dag (7)., (7)

i.e. d,, 19 are the least squares residuals when projecting {dg (j )}? p on {da (5)}2 .

Interestingly, (I)Zén <Jn719”> is asymptotically equivalent to generalized LM tests
based on different objective functions considered in the literature, cf. Robinson
(1994), such as LM, = n - Sy, (én)lﬂi1 <§n> Sin (én) , where 0,, = (0’, é;,n), is
the associated restricted (pseudo) maximum likelihood estimate (MLE) under Hy,
St (On) = = S0 pus, () s, () and HE(O)™ = Y207 duso (7) duo (7)' - For
example, when p,o (j) = pne (7). LM, corresponds approximately to the LM test
based on the Whittle’s log-likelihood objective function, which is 4,, (0) in (1),
whereas with p,, () = p,0 (J), it corresponds to its time domain Gaussian likeli-
hood counterpart. Applying arguments in Robinson (1994), LM, —4 x2, (v'HL (60)
The statistics ¥, ; are asymptotically equivalent to LM, under Hi, when using

optimal weights, as stated in the following Corollary, which is a straightforward

consequence of Theorem 2.

Corollary 3 Under conditions in Theorem 2 and H 1ns

\I/n@n (d}n,én> —d le (7,900 (d)ooﬁo> 7) )

where Q () = X2 di ()w () (Saw(Dw())  Lw () dn(),  and
5, (duin, ) = LMy + 0, (1).

The tests (I)Zén (djn,én> are computed using any preliminary restricted y/n-consistent
estimator 6,, under the sequence of alternatives { I Infp>1 LThus, ¥ 5 (dn 19n> is as-

ymptotically locally efficient in its class for testing Hy in the direction of Hy,, as well

10
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as asymptotically equivalent to the LM test, noticing that €, (cioo,lgo) = H (hy)7"
because 37 dig, (7) doo160 (1) = 32521 doo,160 () doc,160 (7)) -
When testing in the direction of innovations with M A (m), AR (m) or the auto-

correlation structure described in (2),

dig () = (Lgj=ys- - - l{j:m}>/ (8)

n (7), so that Si,, (0) = — (0,6 (1), -, Ppe (m))/, and H' (0)™" equals

Ly — (dog (1) ..., dag (m <Zd29 ) dag (j > (doo (1), ..., dag (m)).

The corresponding LM statistic has the form

LMy =n(p,5, (1), p,5, (m)) Hy! (9n> (Png (1) Pug, (M)

and, by Corollary 3, is asymptotically equivalent to ¥, 5 (dn 19, ) for any /n-
consistent estimator 971 restricted under the null.

However, in the presence of estimated parameters, tests based on the sum of the
squares of the first m ERAs are not equivalent to LM tests, even asymptotically. By
contrast, ¥, » (czmén) with d1y given by (8) can be written equivalently as the Box-
Pierce statistic BP,; (m), but with p, ; substituted by the linear transformation

L, 4. Pnp,» Where for any generic function g : Z — R, £,, ¢ is the linear operator

9.07) = don () (50}, o (1) oo (1) S 9/ (0) g ()
14 dog (])/ (ZZ —jt1 dag ( ) dog (Z)/> dog (])

j=1,...,n—1—¢q. Thatis, £,pg(j) are the standardized forward recursive

Y

En,ég (]) =

residuals when projecting g on dgy, as defined by Brown, Durbin and Evans (1975).

We state formally this result in the next proposition.

Proposition 1 When testing Hy, using a?n,lg in (7) for dig in (8),

Vo ( nl@) = Z nepn@
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3. TESTS BASED ON REGRESSION RESIDUALS

When {X;},° _ are the unobserved errors of a multiple regression model, new
difficulties arise because of the presence of nonparametric nuisance functions when

computing the optimal weights. Suppose that
Y, =Z g+ Xy, t==41,+2,...,

where we assume first that {Y;, Z;},° __is a 1+p-valued vector covariance stationary
time series, and 3, € R? is a vector of unknown parameters. We shall discuss the
case when Z; admits non-stochastic regressors later.

Let (3, be a \/n-consistent estimator of 3, e.g. the Gaussian MLE. In order to test
the specification of X} in these circumstances, consider residuals X; (8) = Y; — 5'Z;,
t=0,%+1,...,ie, Xy = X; (5,) and

vy (B)

Ly e (B 2B =B}, 1 =021,

e (0,5) = vy (B) X (B) =

Le., e = et (0o, By) - As before, the autocorrelation function of {e; (0, 5)};~___ canbe
estimated either by the sample autocorrelation function g5 () = Angs () / Anes (0),
with ’?ne,ﬁ (]) =n"! Z?:j+1 €t (07’&7 Bn) Et—j (07’&7 ﬁn) ) j = 07 1’ cee, OF bY7 ﬁn&ﬁ (]) =
Ynop (7)/ Aoz (0), where 7,45 (j) is defined as 7,4 (j) with Ix replaced by Ix(s).
Also in this Section, p,y5 refers to either p, g5 or p,g5-

In order to identify the parameters, assume that ¢, (B) Z;, are predetermined,
ie. E(e(0,8)Z;) = 0, j < 0, but not necessarily strictly exogenous. Then,
defining the cross-spectral density function between X; (3) and Z;, fx(s),z say, by
E(Xo (B) Z;) = (2m) " J7_exp (iAj) fx(s),z (A) dA, we note that

Nop (j) = B{c @, 5)0‘2909 (B)Z;) = 27302 /_ﬂ exp (iA\j) ﬁ(jé);(z)\)(/\)dx

is then zero for j < 0, but allowed to be nonzero for j > 0. We also extend Class B

to Class C' to incorporate equivalent conditions on 7,5 as on dg. Assuming that
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J € (), the next theorem is a straightforward extension of Theorem 3. Hence, its

proof is omitted.

Theorem 4 Assume that {X;};> € A, Je€C and Hy, € L,
n—1 n—1 rn—1 .
> w () s, (1) =D w (4) Puses, (1) — <@0 ) 2w @ (T ) o, (1),
1 —1 n 0 —1 d90 (])
j= j= j=

Thus, asymptotically distribution free test statistics are based on weights or-
thogonal to both 7y 5 and dg,. To this end, we can consider the semiparametric

estimator

N 1 27‘(’ ex 2 IX( ()\k)

or time domain versions. This avoids to parameterize fxg), z.
For any weight function w and a smoothing number m, define
m /
Mngs ()
Wmn 9/3 Z w ( nop ) )

k=1
-1

Nnos (k) Nnos (k‘)l Nnop (k) dy (k)l (nnGB (]))
k=1 do (k) gs (k) do (k) d (k) do (j)

Thus, reasoning as before, ¥, 0,3, (&;mn’gngn) , With W08 (W) = Y05 (w)’ Vs (W)

and oy
Vi 9/3 (Z w j),) Z w (J) Prgp (J

is expected to be asymptotically pivotal under the null and suitable regularity
conditions.

The convergence in distribution of v,,, s (d)mn,gnﬂn) is proved assuming that
(X:, Z}) belong to Class D, a multivariate extension of Class A, but allowing fx z

to be nonparametric. It is also assumed that

1
—+nqj2—>0asn—>oo 9)

13



to control the estimation effect of 7y, 5. (7) by Nnbos, (7),7=1,...,m. The trimming
is needed because, unlike dg,, 7,,9,5, depends on a sample average. Notice that the
trimming can be avoided by assuming a parametric function for fx z = fx(s,),2,
which is weaker than assuming that Z; is strictly exogenous, i.e. 1,5, (7) =0 all
J=>1

Next theorem provides the limiting distribution of ¥,,, 45 (a]mnﬂnﬁn) under local

alternatives

Hy, : Pons, (j) = M + a"n(]), j > 0 for some (9{),66)' €0,

vn

and shows that the test @7 o 5 (Prn,0,8, ) is locally efficient in its class. We also

omit the proof given the similarities with that of Theorem 4.

Theorem 5 Assume that { (X, Z{)/}z_oo €D, JeC, and (9), under Hy,, € L,

-1/2 o

U (@mn,np,) —a Nim (Z W08 (J) Wos,008, (j)/> > oo, (1) () Im
i=1 j=1

If the elements of Z;, t = 1,2, ..., are nonstochastic, such as a polynomial trends
in ¢, and under the identifiability conditions stated in the Appendix as Class F,
estimation of 8 does not affect the asymptotic properties of ERA’s and weights
need not be orthogonalized. The reason is that the Z; are strictly exogenous in
this case, and the corresponding function 7,5 (7) is zero for all leads and lags.
This fact, together with the assumption that 3, is (at least) y/n-consistent, renders

Theorems 3 and 4 valid in this set up.
4. A MONTE CARLO EXPERIMENT

This simulation study is based on 50,000 replications of ARFIMA (p,d, q) mod-

els under alternative designs. The innovations are independent standard normals.
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Parameters are estimated using the restricted Whittle estimator under the null
hypothesis and we use time domain ERA’s.

We have computed the percentage of rejections using five distribution free tests:

1. Delgado, Hidalgo and Velasco (2005) omnibus test based on the transformed

T, — process using the Cramer-von Mises criteria, CvM.

2. The efficient LM test against different residual autocorrelation alternatives.

A~

3. Our efficient test \ifn = V9, (dn710n> with cimwn corresponding to different

residual autocorrelation alternatives.

4. Our recursive portmanteau test (RPT) \i/n, with cimwn corresponding to the

alternative of residuals autocorrelated according to an AR (m), cf. (8).

5. Box Pierce test, computed as proposed by Ljung and Box (1978), BP, (m).

Table 1 reports the percentage of rejections under the null of AR(1), MA(1) and
integrated of order d process (I (d)), with sample sizes of 200 and 500. We have
computed BP test for m = 10,20 and 30. Choices of m around /n are expected to
yield test statistics with good size accuracy. We also provide results for m = 5 in
order to check size accuracy and power for small m. We report results for our RPT

using small values of m = 1,2, 3,5.

| TABLES 1 & 2 ABOUT HERE]

As it happens with the standard LM, test statistic considering AR (m) (or
MA (m), or Bloomfield(m)) departures from the innovations white noise hypothe-
sis, the weighting matrix of the test statistic ¥,,,, <cin719n> becomes near idempotent

as m increases. This fact prevents from using our RPT or the LM test with large

values of m in this situation. The size accuracy of the RPT is excellent for the
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small values reported in the three designs considered. The CvM and BP tests also
perform very well for a sample size of 500, but LM, and U,, suffer very serious size
distortions for some designs.

The proportion of rejections under alternative hypotheses are reported in Table
2 for n = 200 and different designs. All the tests detect departures from the
AR(1) specification in the direction of MA(1) innovations, as well as departures
from the MA(1) specification in the direction of AR(1) innovations. However, I(d)
departures from the white noise hypothesis are better detected by the RPT than any
other test. The classical BP test rejects less than the others in this situation. It is
worth mentioning that departures form the AR(1) specification with parameter 0.5
in the direction of I(d) correlated innovations are not detected by any test for the
sample sizes considered. Departures from the I(d) hypothesis are better detected.

However, the RPT works much better than the others in this case.
5. REAL DATA EXAMPLES

We analyze the specification of two time series previously considered by Ve-
lasco and Robinson (2000) in the context of fractionally integrated models with
ARMA (p, ¢) and Bloomfield(q) parametric specifications for the short memory com-
ponents. The former ones are the ARFIMA models and the later are called Frac-
tional Exponential models (FExp(q, d)).

The first data set consists of 500 annual time series of tree-ring widths in Ari-
zona from 548 A.D. onwards, obtained by D.A. Graybill in 1984 and maintained
by R. Hyndman at www-personal.buseco.monash.edu.au/ hyndman/TSDL. Lack
of stationarity is the main issue in the analysis of this series, since fractional para-
meters estimated were in general indistinguishable from the border value d = 0.5.

The different tests used in the Monte Carlo experiments above are used for model
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checking of the specifications considered by Velasco and Robinson (2000). We use
similar values of m as in the simulations. We also used Whittle estimators, but for
the goodness of fit analysis of FExp models we use frequency domain ERA, p,, .
We work with the increments of the series and add one unit to the estimates of
the memory parameter, though results with raw data are qualitative similar and,
despite possible nonstationarity, similar inference rules could be justified along the
lines of Velasco and Robinson (2000). The results of this analysis are contained in
Table 3. Basic models with none or only one short memory parameter are always
rejected. BP tests for m > 10 hardly reject any specification, whereas our test 0,
clearly rejects these models for all m considered. The ARFIMA(1,d, 1) model is
also rejected and CvM test agrees with these conclusions. The remaining models
with two short run parameters are not rejected, being the FExp(2, d) preferred by
BIC criterion (apart form the ARFIMA(O,d,0) which is heavily rejected by our

test).

| TABLE 3 & 4 ABOUT HERE]

The second time series is the chemical process temperature readings (series C)
from Box and Jenkins (1976). Beran (1995) estimates the memory parameter d,
rather than fitting an ARIMA model as Box and Jenkins suggest. As before, we
work with the increments. The ARFIMA(1, d, 0) specification is strongly rejected by
our new test, while the BP test only rejects clearly the pure fractional specification
for moderate m. However, the FExp models are not rejected and in particular
the FExp(1, d) specification is preferred by BIC. In order to test Box and Jenkins’
specification of an exact unit root, we test for long memory alternatives on the
increments using also optimal two sided tests ¢, ; (W) with w (j) = j ~1. These tests
reject at a = 0.01 all short memory specifications which impose d = 1, and so

do CvM and ¥, tests, though the later only provides little evidence against the
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FExp(2,1) model. In general, the BP test displays very little power against long

memory alternatives for large or moderate m.
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APPENDIX A: TESTS USING FREQUENCY DOMAIN
AUTOCORRELATION ESTIMATES

Class A. The process {X;},~ __ defined by ¢ (B) X; = ¢; belongs to Class A if:
(¢) The process {e:},~ . satisfies that E(e}| F;_1) = p, with yu, constant (u; =0
and p1, = 0?) forr =1,...,4 and all t = 0,41,..., where F; is the sigma algebra
generated by {e,, s < t}.

(i5) f(A) = |p () |2 is positive and continuously differentiable on (0,7], and

[ (d/dX)log f(A)| = O (JAI7") as [A] — 0.

Class B. The parametric model 7 belongs to Class B if:

i) fo (N) is continuously differentiable in § € ©, A € (0, 7|, with derivative p, (\) :=
0/00)log fy (N), so that iy, (A) is continuously differentiable on (0, 7].

(

(

(i1) [|O1g, (A) JOA]| = O (IN71) as [A] — 0.
(#1) supgee |1t (M = O (log [A]) as [A[ = 0.
(

iv) For all A € (0, 7] and 0 < § < 1 there exists some K < oo such that

1

K
fo, (M) log |A]-
{6:)16— 90H<5/2} ||9 90”

fo (N) [A]P
(v) For dp (j f ttg () cos (JA) dX and dy (j) = ddy (5) /00, j = 1,2, ...,

— 14 (0 — 00)' g, ()\)‘

Z dg, (j) da, (j)' is finite and positive definite; (10)
sup|da ()| + sup |do ()| < €571, j=1,2..... (1)
0ce USC]
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Class C. The parametric model 7 described in Section 5 belongs to Class C' if:
(7) All conditions of Class B hold.

(it) Conditions (i7) — (i74) of Class B hold replacing p, (A) by fx(sz (A) /fo(N),
@,5) €o.

(77i) Condition (v) of Class B holds with dy replaced by (n;ﬂ, dg)/, 0,58 0.

Class D. The (1 + p)-process {V;};= ., ¥ (B)V; = U, belongs to Class D if:
(i) The process {U:},o _ satisfies that E(U| Fimy) = 0, BE(UU/| Fio1) = 3,
B (UnaUpUsel Fi1) = taper B (UraUipUrcUal Fio1) = Bapea With fgpe and figpeq
bounded, all a,b,c,d = 1,...;1+p and all t = 0,41,..., where F; is the sigma
algebra generated by {Us, s < t}.

(7)) fv(A) = |¥(e”)|™? is continuously differentiable on [—m,0) U (0, 7], and
I(d/dX)log fv (M = O (IAI7") as [A| — 0.

(1) The elements of fy (A) /f (\) are bounded on [—m, 7], where f = {fv} €
A.

Class E. The nonstochastic regressors {Z;},- _ belongs to Class E if D, =

S WiW/ is positive definite for large enough n, W, = ¢ (B) Z;, Z; =0, ¢t < 0.

Class L. The sequence of local alternatives {Hi,},~, in (4) satisfies that
ir(j)2 < 00 and ian (j)’=0(1) as n — oc. (12)
j=1 =1

(i) The function [ defined as [ (\) = (27) " > 5217 (j) cos (Aj) , satisfies that |I (A)| <

K |log \| and is differentiable in (0, 7] so that [(8/0A) 1 (\)] < K |A]", all A > 0.

(i7) The absolute value of g, (\) = (27) " > 72y @n (j) cos (Aj) is dominated by an

integrable function not depending on n for all n > ny.

We consider now the frequency domain case, where p,,5 (j) = P (j), and w scalar,

to simplify exposition.
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~1/2
Proof of Theorem 1. Define ¢, ;, (w) = n'/? (Zle w (j)2> Z?:l Proe () w (7) -

By Lemma 1, ¥, ; (w) —4 N <(Z] 1w(j)2>1/2 Z;‘?:lr(j)w (1), 1> as n — oo for

k fixed. Then, using Theorem 3.2 in Billingsley (1999) we only need to show that

hm limsup Pr (|, (w) — 1, (w)]| > €) =0 (13)

for any € > 0. We first note that the innovation variance estimate is the same in
both v, ; (w) and 9, (w) so we concentrate on the autocovariance estimates 7,4, (J) ,
j=0,1,.... Then we show that, under Hy,, En'/?(6, ()] = O (n™°) for some § > 0
and for each j = 1,...,k, where &, (j) = Y9, (j) = 20%r (§) — Ve (j) and 7,,. ()
is defined as 7,9, (j) but replacing Ix (-) f,.' () by L. (+) . Proceeding as in the proof

of Lemma 1,

7n90 = % kz:
) b

where E |V, (j)] = O (1

cos (G) {1+ n~'? M)} +n"Va (),

ecause ¢, is uniformly integrable. Then, using Lemma 4
in DHV, for both s =1 and s =,

MLE <IX M) _ ()\k)) 5 () 008 ()

o 2w

-0()

for some ¢ > 0, uniformly in j, while E )(27r/ﬁ) S L () L () cos (jAg) — o?r (j)‘ =
O (n~'logn) using Lemma 2 and Lemma 1 in DHV with r and [ satisfying condi-
tions of Hy, € L. Next, this shows that

1/225

j=k+1

<n1/22](5 )| |w (5

is 0, (1) as n — oo, uniformly in k, using (3). Finally, using again (3) and Lemma 2,

Enlﬂim(j)wm =0<i Z Z jw ()] |w (j |>

j=k+1 j=k+1 =kt i =k+1

sup

and )ZJ pr T )w(j)‘ are both o (1) as k — o0, so (13) holds by Markov’s in-

equality. [J
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Proof of Theorem 2. Write

Zw 7) Puo,, Zw 7) Proy () — (On —Qo)zw(j)den(j)+Zana

where Rnl — (9 - 00) Z] 1 W( ){den ( ) dgo (])}, Rng = (Qn — 90)/2?:_11&) (])
X {dgy () = dngo ()}, Bns = 27—} w (j) dne,, (), and

Rn4 = [% - = :| Zw 771490 )

77190
R = [ 1]2 (1) 3na, ()
n5 = = - W) Vno, \J) >
= 5@ ) )

with dug () = (2m/7) 072 30, I (M) f57 () g (M) cos (Aif) , and

dno (7) = 73:2 ; ;;i 8\2)) {J;f:((::)) — 14 (0n — 6o) 119, (Ni )} cos (Aij) -

Thus, it suffices to prove that R,; = o0, (n""/?), j = 1,...,5. Applying (12), (3),

and taking into account that 6,, is \/n-consistent, R,; = 0, (n_l/ 2) . Write
n—1
R, = (Gn—eo)’zw( ){doo Z,ugo ) cos j)\)}

=00 S () {?—”Z 7 28 o O cos w}.

The first term on the left hand side is O (n~'logn?) applying Lemma 1 in DHV

and (2), and the second term can be written as

0= 00 253 (5 = .00 ) i, ) X yeos(in) - (10

#0025 (100 - 253 i, (eosin) (9

Applying (3), Z?:_ll w (7) cos (jA;)| = O (logn) uniformly in i. Thus, after applying

Markov’s inequality, 0, — o = O, (n"/?) and (iii) of Class B, (14) is an o, (n=/2)
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whereas (15) = 0, (n™') by DHV’s Lemma 4. Hence, R,2 = o, (n*1/2) . Applying

condition (iv) in Class B,

|

because 0, is \/n-consistent, and we can take = Kn~/2 in , so that |\;| < K

. _ C Ix (i
o )] <10 = 0017 £ 3 hog A, 2
i=1 0

Joo (M)

when ¢ > 1, reasoning as in the proof of Lemma 8 of DHV. Therefore,

n—1 C n I ()\)
Rosl < 1160 — 601> Jw () = 3 Jlog \i? 22222 = o, (02
IFiall < 160 = 01" Xl G)I 3 P M 2y = o0 (0727)

on taking expectations and using ||6,, — 6o|| = O, (n~'/?) . Finally note that replac-
ing 4,9, (0) by 7,4, (0), and this by 0%, makes no difference by (50) in DHV, which
proves that R,4 = 0, (n7'/?) and R,5 = 0, (n="/?). O

Proof of Theorem 3. We note that by Theorem 2 and because of the exact
orthogonality of &, , and dg,, ¥,, (Vne,) = U (One,) + 0, (1), with ¥, (ne,) =
nt/2 (Z;‘;ll Wn o, (j)2> o Z?;ll Proo (J) @np, (J) - So, we can apply Theorem 2, with
w substituted by @,.,, after noticing that Zj‘;l Cmp, (7)° < o0, because of (3),
(v) in the definition of Class B, and using @y, () = w (j) — do, (j)' B, With
B = (S0bds () o ()) St do (7)o (). amd where 5, = O, (1), cf

Lemma 3.
- [e) -\ 2 —1/2 00 . .
By Lemma 17 ¢n (Woo,eo) —d N ((Zj—l Woo,00 (j> ) ijl Weo,0 (.]) r (]) ) 1) )

because 0 < Y 77| weo g, (J )? < 00 since w and dy, are not perfectly collinear, (3) and

(v) of Class B. Then the theorem follows if we show that v, (Wn.0,) — ¥, (Weo.6,) =

¢n (dj”,@n) - q_bn ((Dnﬂo) + lzjn (djﬂ,eo) - ,(pn (WOO,GO) is OP (1) FiI‘St,

- . >y Py () {@n00 — @nso (4)}
D (@na,) = Uy () = ! FEIS R
(23:1 Wn,0, (J) >

n—1 n—1 —1/2 n—1 —1/2
0> g () @no () (Z W, (j)Q) — ( B0 <j)2> :
j=1 =1
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where g, () =@ngo (7) = dog () {Bgy = Buo, } +1{dos (7) — do, (5)} Brp, - Using a
MVT argument and (11), ||dg, () — do,, (j)I| < C |00 — 0ol 7, and || B9, — Bro, || =

O, (|6, — 6o]|) using the rates of decay of w, d and d. Then

1/2 Z pn90 {wn On wn 90 = 1/2 Z pTL90 dgo .>/ {Bneo - ﬁn@n}

/2 Z Puoy () {do, (5) — do,, (5)} Brg,

is 0, (1), using the MVT, that n'/2 Z] 1 Prgo (7) doy () = O, (1), Hﬂngo — BHQHH =
Oy (/105 — oll), and

1/22pn90 ) {doy () = do,, (7)}|| < C' 10 —90||n1/22|,0n90 )i,

7j=1

which is O, (nil/ 2log n) = 0, (1), proceeding as in the proof of Theorem 1.
NeXt? T_bn (C:)n’go) - zLn (wOO,HO) iS

12t Py () {0 (7) = oo ()}
(St o )

(16)

n—1 —-1/2 n—1 -1/2
(Z (D"’OO <J)2> o (Z Woo,0 (j)Q) 1/2 Z pn@g WOO ,00 j) (17)
j=1 j=1

and we find that, cf. Lemma 3,

(1/22%90 ) (o (7) = ooy (i )<Z{wneo = e (7)1

n—1 n—1

C . . A y y
+ DD ono0 (1) = woeso (D@ (1) = woeso ()]

=1 j'=1
2
which is o <Z?;11 | do, (j)||2> +nlo (Z;;l || dg, (])H) = 0(1) as n — oo, so that
(16) is o, (1) .
On the other hand, using Lemma 3, the term in braces in (17) is 0 (1) as n — oo,

o (17) is also 0, (1) and the theorem follows. [
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Proof of Corollary 3. The first part follows as Theorem 3 whereas the second one,
follows noticing that n'/? Z;L;ll Prir. (1) czn,lén (j) = n'/? Z;L;ll Proe (J) czn,l(;n (4) +
0p (1) using Theorem 2 and that CZn,l@'n (j) and d, ,5 (j) are orthogonal. [J

Proof of Proposition 1. First notice that » 7", [£, 60,0 (NI? = Snt — Sp_1—m

using (5) in Brown et al. (1975), where

/

0 0 0 B 0
St = Py - | ) 1 1 o
0 In—l—m X?n_—l—l X?n_—&-l

is the sum of least squares residuals in the linear projection of {p, (])};:; »
on X124, where X5 = (dag (j) ... doo (k). k > J, pr = (ppg (1), pog (k)
and 0 is a conformable matrix of zeros. Note that the lack of perfect colinearity
between dig and dyg, cf. (10), implies that > . dag (i) dag (i)' is positive definite
for dig (j) = (1gj=1ys- -+ Lijmmy ) -

Thus, it suffices to show that W, (dmle) = n(S,-1 — Sn—1-m). To this end,

write

A

g (dnio) =l PaVis A Vi Pap,
where V,, = (dy (1),...,d; (m)) = ( I, 0 ) Ay =1, — X7 (X?‘l/X?_l)_l X
and P, = I, — X}7* (X?‘”X’f‘l)fl X7, Then we can use the fact that A =
L, + X1 (X"mjrll’X%jrll')_l X7 to show that this is n (S,—1 — Sn—1-m) after standard

algebraic manipulations. [J

APPENDIX B: TESTS USING TIME DOMAIN
AUTOCORRELATION ESTIMATES

For time domain analysis we only describe the main differences. We use the
simplifying assumption that X; = ¢, = 0 for ¢ < 0, c¢f. (2) in Robinson (1994), so

that Lemmas 1 and 2 follow at once for 4,, under H, using the martingale property
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of £;. Then assuming that the sequence of alternatives { H 1n}n21 belongs to Class
L*, we can show Lemma 1 and then Theorem 1 under H,:
Class L*. Hy, € L and ((2) = 372 (27 1= gy, (2) ¢~ (2) satisfies ¢ (0) = 1 and
G=n?r()+nta, (j), j=1,2,..., where |r(j)| < Kj', j=1,2,..., and
for all n sufficiently large |a, (j)| < Kj<!, j=1,2,..., for all € > 0.

Regularity conditions on J for the analysis of tests based on time domain au-
tocorrelations p,, are similar to those for frequency domain, since, assuming that
@y (e™) is differentiable so that &, (z) = (0/90)logyy, (2), & (0) = 0 all §, and

expanding &, (2) = 372, &y ;27, we find that

do (j) = —% /W Re {& (¢™) } cos (jA) dX = =&, ;.

Theorems 2 and 3 for p,, follow replacing condition (iv) in Class B by (iv*):
(iv*) For all 0 < ¢ < 1 there exists some K < oo such that 1y (2) = 3721y ;27 =

©p (2) /%090 (2) =1—(0— 90)1590 (z) satisfies that SUDP{6:]|0—60|<5/2} 160 — 6o
< Kjlog?j, j=1,2,....

‘_2|909J|

APPENDIX C: LEMMATA

Lemma 1 n'/2 (b, 4 (1) ..., png, () —a N ((r(1),...,r (k). I) , under H, €
L, for k fized and {X;};° € A.

Proof. We only consider the asymptotic distribution of n'/2 (3,4, (1), ..., 7, (k))’,
since ¥4, (0) —, o under Hi,, see e.g. (51) in the proof of Theorem 2 in
DHYV. First, we write fo, (A\)~" = f (A {1 +nY2h, (N)}, where h,, () =1 (X) +
n='2g, (\) satisfies that [ b, (A) cos (Aj) dX = r(j) + n=*?a, (j). Then, under

Hlm

51 QWZ (M) gn(Ak)}

cos /\j){ +nl/2+ "
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Now, reasoning as in the proof of Theorem 5 of DHV and using that g, is integrable,
Yoo (5) = Ane () + 07202 (j) + 0, (n71/2) , cf. also the proof of Theorem 1. The

convergence then follows as in Lemma 7(b) of DHV, using Lemma 2. [J

Lemma 2 Assume that {e;};°__ is as in Class A. Then nE [72,(j)] = o* +

Om™), j=1,2,..., and nE[,. (J) ¥, )] =0 (n71), j#4', asn — .

Proof. It follows by direct calculation of the moments of I. (\;), cf. Brillinger

(1980, Theorem 4.3.1) and approximation of sums by integrals. [

Lemma 3 Under (3), (10) and (11), uniformly inj = 1,2, ..., |0ne, (J) — Woo,8, (J)|

= o(|ldsy (D) and |@ng ()" = weeso ()] = 0 (Ildoy (D)II* + lldog ()]l | ()]) + as

n — oo.
Proof. Follows using standard ordinary least squares algebra. [
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Table 1. Empirical size of LM and Portmanteau tests at 5% of significance.

A

lGvM LM ¥, |V, eu~ AR(m) |  BP., (m)

m | [T 2 3 5 |5 10 20 30
n = 200
o AR(1)

010 gor ~1(d)

-0.8 47 34 34 49 48 46 4.3 5.5 5.5 6.0 6.6
-0.5 4.4 3.2 33 4.8 4.7 45 4.2 51 52 5.7 6.3
0.0 4.1 25 25 5.0 4.6 44 4.2 49 5.0 5.7 6.3
0.5 3.6 1.1 07 4.9 4.7 45 4.2 48 51 56 6.3
0.8 3.1 49 3.0 4.8 46 46 44 5.0 5.2 58 6.3
Hoi MA(l)

o gt ~1(d)
-0.8 4.2 3.5 3.3 45 44 42 41 6.7 6.3 64 7.0
-0.5 4.2 3.0 3.1 45 45 44 41 5.1 5.1 5.7 6.3
0.0 41 23 23 4.7 44 44 41 4.8 5.0 5.6 6.2
0.5 36 33 06 46 44 42 4.1 4.8 5.0 5.5 6.2
0.8 3.1 245 3.6 46 44 43 4.3 6.3 59 6.1 6.6
Hoi I(d)

do Eot NAR(l)
0.0 3.5 49 43 4.3 3.8 35 34 5.0 5.2 5.7 64
0.2 35 49 43 43 38 34 33 5.0 5.2 5.7 6.3
0.4 3.6 5.1 4.2 4.2 3.7 34 3.2 5.0 5.1 5.6 6.2
n = 500
Ho: AR(1)

d10 gt ~1(d)
-0.8 5.1 4.3 4.3 5.1 5.0 5.0 4.8 54 53 5.5 5.8
-0.5 5.0 4.1 4.1 5.0 5.0 4.9 4.7 51 4.9 54 5.7
0.0 4.6 3.6 3.6 5.0 5.1 4.8 48 5.1 49 54 5.6
0.5 4.5 2.0 2.1 5.0 5.0 49 48 5.1 5.0 5.3 5.7
0.8 4.3 4.2 3.8 5.1 4.8 5.0 4.9 53 5.1 54 5.7
Hol MA(l)

o gt ~1(d)
-0.8 4.9 4.3 4.2 5.0 48 48 4.6 6.1 5.6 5.7 6.0
-0.5 4.9 4.0 4.1 49 5.0 4.8 4.7 5.2 5.0 54 5.7
0.0 46 35 35 48 50 48 46 5.0 49 53 5.7
0.5 4.5 3.2 1.8 4.9 4.8 4.8 47 5.0 5.0 5.3 56
0.8 4.3 174 3.8 49 4.7 4.8 4.7 5.8 54 5.5 5.8
Hol I(d)

do cor ~AR(1)
0.0 4.5 5.0 4.7 4.7 44 43 4.1 53 5.1 54 5.7
0.2 4.5 4.9 4.6 46 44 43 4.1 5.2 5.1 54 5.7
0.4 4.6 5.3 4.5 45 43 4.2 4.0 53 5.1 54 5.7
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Table 2. Empirical power of LM and Portmanteau tests at 5% of significance.

~

cvM LM W, | W, ey ~AR(M) | BP,y. (m)
m \ \ 1 2 3 5 \ 5 10 20 30
H[) . AR(l), (510 = O Hl L Eot NMA(l) n = 200
o or ~MA(1)
-0.8 | 100. 99.8 99.8 99.8 100. 100. 100. 100. 99.6 94.9 &9.1
-0.5| 80.8 83.6 80.6 80.6 789 714 59.9 66.7 49.9 383 33.8
0.2 7.1 12.9 9.7 9.7 80 7.1 6.1 73 6.7 69 7.5
0.5 70.8 75.9 80.8 80.8 79.2 73.0 61.8 68.7 51.7 39.2 34.7
0.8 99.6 99.5 99.8 99.8 100. 100. 100. 100. 99.6 95.2 89.3
Hy: MA(1), nyg=0. Hj:eg ~AR(1). n =200
010 gor ~AR(1)
-0.8 | 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100.
-0.5| 844 781 81.2 81.2 823 77.3 69.7 74.2 61.9 504 44.9
0.2 7.2 25.0 6.9 6.9 6.1 56 4.9 59 56 6.1 6.7
0.5 | 771 869 815 81.5 80.4 75.1 66.9 72.1 59.3 48.2 43.0
0.8 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100.
Hy: I(d). Hy:ep~ AR(1). n =200
510 ‘ Eot NAR(l) ‘
d(): OO
0.2 11.3 372 34.3 34.3 23.2 6.1 13.0 17.5 14.3 125 124
0.5 | 26.8 798 77.7 77.7 68.3 56.8 43.7 474 41.2 31.7 28.6
0.8 9.8 55.4 514 51.4 46.4 36.7 24.4 244 264 21.4 20.2
do= 0.2
0.2 11.1  36.7 34.2 34.2 23.1 171 13.0 174 14.3 125 124
0.5 | 26.7 79.1 77.7 77.7 68.2 56.8 43.6 473 41.2 31.6 284
0.8 9.6 61.1 53.7 53.7 494 40.6 28.3 24.8 26.6 21.5 19.9
Hy: AR(1). Hy:eg~I(d). n=200
do \ cor ~ 1 (d) \
(510: 00
0.1 8.2 10.2 8.7 84 8.1 7.8 7.1 80 75 75 7.8
0.2 19.9 299 26.5 224 21.8 21.1 19.3 204 184 15.8 15.0
0.3 36.0 47.5 425 425 42.3 40.6 37.8 37.2 35.0 30.0 26.8
0.4 48.8 46.1 38.8 60.5 60.0 57.6 53.7 49.1 484 41.8 37.3
(510: 05
0.1 3.6 2.7 1.0 5.0 48 46 4.3 5.0 5.1 5.8 6.4
0.2 3.3 4.7 1.5 5.5 53 52 53 55 57 6.2 6.7
0.3 3.6 8.3 2.6 78 6.9 6.8 6.5 70 6.8 7.1 7.5
0.4 5.7 16.2 7.1 14.8 11.6 109 9.9 11.7 9.6 8.9 9.1
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Table 3. Ring tree Arizona data, n = 500. Goodness of fit analysis for ring tree
data based on fractionally integrated models. *,** *** denote significant values at

10%, 5% and 1% respectively. Standard errors of d estimates are in parenthesis.

BIC (CZ) CvM ‘ U,,, gt ~AR(m) ‘ BP,y. (m)
m \ 1 2 3 5 \ 5 10 20 30
model Hy :ARFIMA(p, d, q)

(0,d,0) |-3.5234 (437) .62 2.28  18.03*** 19.70™* 20.10*** | 13.26™ 17.06** 28.90* 41.90
.035

(1,d,0) |[-3.5120 (%549) 1.57% |[14.60*** 16.49*** 16.60*™** 17.24*** |13.56*** 16.55™* 26.51* 31.06
.05

(2,d,0) |[-3.5215 (%(557?3 71 2.23 2.27 3.09 5.11 2.95 6.94 15.50 18.31

(0,d,1) |-3.5160 (%2107) 0.91 1.01 6.66**  7.02*  10.52* |10.14** 12.87 18.62 20.69

(0,d,2) |-3.5216 (%% 1.17* .29 1.72 1.88 5.54 2.23 6.61 14.30 16.76

(1,d,1) |-3.5130 6%)41) .26 507  5.22*  6.63* 8.76 6.67** 10.58 16.86 19.16

Hy : FExp(m, d)
FExp(1,d)[-3.5122 ((3966) 1.70%* 00 11.57%* 12.18"* 13.97** [13.20"* 17.20"* 26.40* 30.08
FExp(2,d)|-3.5233 (%}g .70 .00 .00 42 1.88 1.67 8.05 17.90 21.11
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Table 4. Chemical C data, n = 226. Goodness of fit analysis for ring tree data

based on fractionally integrated models. *,** *** denote significant values at 10%,

5% and 1% respectively. Standard errors of d estimates are in parenthesis.

BIC (d) CvM ‘ U,, co ~AR(m) ‘ BP,y, (m)
m \ 1 2 3 ) \ 5 10 20 30
model Hy :ARFIMA(p, d, q)
(0,d,0) 3.7949 (871) 4.53** 120.87*** 20.89* 21.69*** 23.44*** |23.58*** 27.22*°** 29.03** 30.61
.052
(1,d,0) 3.7176 1(.(())6753 1.37% | 6.88"* 6.92** 832" 9.71* | 9.61*" 10.87 12.28 13.41
.065
(2,d,0) 3.7101 1(027%)7 31 .50 1.54 214 3.57 3.16 354  4.71 5.81
(0,d,1) 3.7120 1(.125%? 97 ] 6.34* 834 883 932 | 817" 882  9.71 10.76
(0,d,2) 3.7054 1(%32%53 11 1.53  1.83  2.00  2.08 1.55  1.87 296 4.33
(1,d,1) 3.7133 1(531? .03 250 348  3.69  3.88 323 354 451 5.70
Hy: FExp(m, d)
FExp(1l,d) [3.6967 1(018%% .75 .96 2.35  3.03  4.20 481 514 690 7.69
FExp(2,d) [3.7196 1(110((35)5 .00 2.16 275 337  5.06 494 489 649 7.28

0 ()

Hy: Unit Root (d =1)

ARFIMA(2,1,0)
ARFIMA(0,1,2)
FExp(2,1)

3.7236 87.17** 1.21*
3.7104 6.2 1.65™*
3.7216 7.7 1.73**

3.06%  8.06™ 11.11"" 14.59** |12.80"* 16.25"" 18.34 20.03
5.16**  7.52** 9.08"* 10.65* | 9.06™ 11.47 13.45 14.86
- - 524  10.66* |10.93** 13.27" 16.92 17.73
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