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Abstract 

 
The construction of asymptotically distribution free time series model specification tests using as 
statistics the estimated residual autocorrelations is considered from a general view point. We 
focus our attention on Box-Pierce type tests based on the sum of squares of a few estimated 
residual autocorrelations. This type of tests belongs to the class defined by quadratic forms of 
weighted residual autocorrelations, where weights are suitably transformed resulting in 
asymptotically distribution free tests. The weights can be optimally chosen to maximize the 
power function when testing in the direction of local alternatives. The optimal test in this class 
against MA, AR or Bloomfield alternatives is a Box-Pierce type test based on the sum of 
squares of a few transformed residual autocorrelations. Such transformations are, in fact, the 
recursive residuals in the projection of the residual autocorrelations on a certain score function. 
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1. INTRODUCTION

Let fXtg1t=�1 be a covariance stationary time series with zero mean such that

the �ltered series

"t = ' (B)Xt; t = 0;�1;�2; : : : ;

is a White Noise process, i.e. an uncorrelated process with zero mean and variance

�2, where ' is a prescribed function of the backshift operator B. We adopt the

normalization ' (0) = 1: The series Xt might not be observable, as it happens when

Xt are errors of a general regression model. The discussion of this case is postponed

to Section 4.

Given a data set fXtgnt=1 ; statistical inferences usually rely on a parametric spec-

i�cation of '; which is described by means of a class of functions indexed by para-

meters taking values in a suitable parameter space � � Rq; say J = f'� : � 2 �g ;

so that '� (0) = 1 for all �. The resulting statistical inferences are invalid when the

putative speci�cation is incorrect. This is why testing the null hypothesis

H0 : ' 2 J

is sorely needed before performing any statistical inference.

The null hypothesis of correct speci�cation can be written as

H0 : ��0 (j) = 0 for all j � 1 and some �0 2 �;

where �� (j) =
R �
�� f (�) f

�1
� (�) cos (�j) d� is the autocorrelation function of the

residuals "�t = '� (B)Xt; t = 0;�1; : : : ; f (�) =
��' �ei�����2 and f� (�) = ��'� �ei�����2

are the underlying normalized spectral density of fXtg1t=�1 and its parametric spec-

i�cation counterpart, respectively; with
R �
�� log f�(�)d� =

R �
�
log f(�)d� = 0 for all

f� 2 J :

A vast majority of test statistics for time series model speci�cation are func-

tions of some estimated residual autocorrelation (ERA) function, i.e. suitable es-
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timates of ��0. Portmanteau test statistics are quadratic forms of an ERA vector,

e.g. Quenoville (1947), Box and Pierce (1970), Ljung and Box (1978) or Hosking

(1978). Lagrange Multiplier (LM) test statistics, obtained after imposing paramet-

ric restrictions to a time series model, are quadratic forms of weighted sums of

ERA vectors, e.g. Durbin (1970), Hosking (1978, 1980), or Robinson (1994) more

recently.

Sometimes it is possible to compute the residuals f"�tgnt=1, and �� (j) can be esti-

mated by the ERA, �̂n� (j) = 
̂n� (j) =
̂n� (0), where 
̂n� (j) = n�1
Pn

t=j+1 "�t"�t�j;

j = 0; 1; : : : ; is the sample autocovariance function of f"�tgnt=1 : The residuals are

often hard to compute, if not impossible, and it may be advisable to apply the

computationally much friendly autocorrelation estimates ~�n� (j) = ~
n� (j) =~
n� (0) ;

where

~
n� (j) =
2�

~n

~nX
k=1

IX (�k)

f� (�k)
cos (j�k) ; j = 0; 1; : : : ; (1)

~n = [n=2] ; [a] being the integer part of a; and for generic sequences fVtgnt=1
and fUtgnt=1 ; IV;U (�j) = (2�n)

�1Pn
t=1

Pn
`=1 VtU

0
` exp fi�j (t� `)g ; j = 1; : : : ; ~n; so

IX (�j) = IX;X (�j) denotes the periodogram of fXtgnt=1 evaluated at the Fourier

frequency �j = 2�j=n for positive integers j:

Henceforth, for the sake of motivation and notational economy, we shall not

distinguish between the alternative autocorrelation estimates, and we shall denote

by �n� either �̂n� or ~�n�: However, the di¤erent results presented in the paper will

be formally justi�ed in the Appendix for both estimators.

Let us assume �rst that the hypothesis to be tested is simple, i.e. the value of �0

is known underH0: The most popular test for testingH0 is the popular Box-Pierce�s

portmanteau test, which uses as test statistic BP�0 (m) with

BP� (m) = n

mX
j=1

�n� (j)
2 ;

wherem must be chosen by the practitioner. This test is a compromise between the
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classical omnibus test based on Bartlett�s Tp and Cp processes and the parametric

Lagrange Multiplier (LM) tests based on some restrictions on the parameters of a

more or less �exible speci�cation. Among them, the ARFIMA (p; d; q) speci�cation

is the most popular, with

'� (z) = (1� z)d
�� (z)

�� (z)
; � = (�0; d; �0)

0
;

such that �� (z) = 1 � �1z � � � � � � � � �pz
p and �� (z) = 1 � �1z � � � � � �qz

q are

the autoregressive and moving average polynomials, respectively. In fact, BP�0 (m)

is the LM test statistic when testing that m parameters of the autoregressive part

(�01; : : : ; �0m) or the moving average part (�01; : : : ; �0m) equal zero. This is also the

LM statistic for testing that �10 = 0 in the Bloom�eld�s (1973) exponential spectral

density speci�cation

f� (�) = g�2 (�) exp

 
mX
k=1

�1k cos�k

!
; � =

�
�01;�

0
2

�0
; (2)

for some �0 =
�
�010;�

0
20

�0
and

R �
�� log g�2 (�) d� = 0 for all �2:

The Box-Pierce�s test belongs to the class of test statistics de�ned by quadratic

forms of weighted sums of residual autocorrelations of the form,

	n� (!) =  n� (!)
0  n� (!)

with

 n� (!) = n1=2

 
n�1X
j=1

! (j)! (j)0
!�1=2 n�1X

j=1

! (j) �n� (j) ;

where ! is a m � 1 weight function such that
P1

j=1 ! (j)! (j)
0 is positive de�nite

and for some generic K > 0

k! (j)k � Kj�1; j = 1; 2; : : : : (3)

Thus, BPn� (m) = 	n� (!) with ! (j) =
�
1fj=1g; : : : ; 1fj=mg

�0
:
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When ! is scalar, Theorem 1 below provides a large sample justi�cation for

the class of tests described by means of the Bernoulli random variable ��n�0 (!) =

1f n�0 (!)>z�g, when testing at the � signi�cance level, where 1f�g is the indicator

function and z� is the (1� �)-th quantile of the standard normal distribution.

When ! is multivariate, tests are described by ��n�0 (!) = 1f	n�0 (!)>�2m�g, where

�2m� is the (1� �)-th quantile of the chi-squared with m degrees of freedom. The

theorem refers to Class A of processes, de�ned in the Appendix. Class A allows for

a wide range of autocorrelation patterns in fXtg1t=�1 ; including long memory, and

imposes a martingale di¤erence assumption on the white noise process f"tg1t=�1 :

This assumption is weaker than Gaussianity, or independence, which are usually

assumed in the time series goodness-of-�t testing literature. See Robinson (1994)

and Delgado, Hidalgo and Velasco (2005) for discussion. Theorem 1 also allows

to compute the e¢ ciency of the tests in this class under the sequence of local

alternatives of the form

H1n : ��0 (j) =
r (j)p
n
+
an (j)

n
for some �0 2 �; (4)

where r and an can depend on �0, and are subject to conditions speci�ed in Class L

de�ned in the Appendix. Let Nm and Im be the m-dimensional normal distribution

and identity matrix respectively.

Theorem 1 Assume that fXtg1t=�1 2 A. Under H1n 2 L,

 n (!)!d Nm

0@ 1X
j=1

! (j)! (j)0
!�1=2 1X

j=1

r (j)! (j) ; Im

1A :

Thus, the corollary below justi�es inferences based on ��n�0 (!) :

Corollary 1 Under conditions in Theorem 2 and H1n;

	n�n (!)!d �
2
m (W (!)) ;

where W (!) =
P1

j=1 r (j)! (j)
0
�P1

j=1 ! (j)! (j)
0
��1P1

j=1 ! (j)
0 r (j) :
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Thus the Pitman-Noether asymptotic relative e¢ ciency of ��n�0 (!) is given by

W (!) =W (r) ; which is in [0; 1] since W (r) =
P1

j=1 r (j)
2 and W (!) is the sum of

squares of the projection of r on !: Thus, ��n�0 (r) is the most e¢ cient test in its

class. When ! is scalar, the asymptotic relative e¢ ciency of ��n�0 (!) reduces to the

squared correlation coe¢ cient between ! and r when
P1

j=1 ! (j) r (j) > 0; showing

that ��n�0 (r) is the most e¢ cient test in its class. When
P1

j=1 ! (j) r (j) < 0;

limn!1 Pr
�
��n�0 (!) = 1

�
< �:

Parametric tests consist of assuming that ' = '�0 and testing the hypothesis,

_H0 : �10 = 0;

where �10 is a q1-valued subvector of �0, q1 � q; in the direction of the parametric

local alternative,

_H1n : �10 = 
/
p
n:

Testing such hypothesis is equivalent to test H0 versus H1n with r (j) = 
0d1�0 (j) ;

where

d1� (j) =
1

2�

Z �

��
cos (�j)

@

@�1
log f� (�) d�;

assuming suitable smoothness restrictions on f� to be speci�ed later. Henceforth,

we always assume that it is possible to interchange the integration and di¤eren-

tiation operators. Then, if �10 and 
 are scalars, the one-sided test is�
�
n�0
(r) =

1f n�0(sign(
)�d1�0)>z�g: . However, in parametric testing, two sided tests are required

when testing that a vector of parameters is equal to zero.

Parameters are unknown in practical situations and they must be estimated.

The corresponding ERA�s with estimated parameters are neither asymptotically

independent or distribution-free. This is why the asymptotic distribution of classical

Portmanteau test statistics is not well approximated by the distribution of a chi-

squared random variable, except when a large, though not too much, number of
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sample autocorrelations is considered. In next sections we develop asymptotically

pivotal tests under these circumstances.

In Section 2 we propose a transformation of the weights which result in test

statistics converging to a standard normal under the null. We show that a new

Box-Pierce-type test based on a linear transformation of the ERA�s, belongs to

this class and is asymptotically distributed as a chi-squared using a �xed num-

ber of transformed ERA�s. These transformed ERA�s are, in fact, the recursive

least squares residuals of the projection of the original ERA�s on certain �score�

functions. Section 3 discusses the implementation of the test with regression resid-

uals. In Section 4, we illustrate the �nite sample properties of our test by means

of a Monte Carlo experiment. Section 5 reports an application to the analysis of

real data concerning tree-ring widths measures and chemical process temperature

readings.

2. ASYMPTOTICALLY DISTRIBUTION FREE TESTS WITH

ESTIMATED PARAMETERS

In order to implement the test when �0 is unknown under the null, we need a
p
n-consistent estimator, �n say. Theorem 2 provides an asymptotic expansion of

the test statistics, which depends on the �score�function

d� (j) =
1

2�

Z �

��
cos (�j)

@

@�
log f� (�) d�:

Notice that d�0 (�) = �@�� (�)/ @�c�=�0 under H0. The statement of Theorem 2

refers to Class B; which imposes some further mild restrictions on J to avoid some

pathological behaviour of d�; but allowing fairly �exible speci�cations, including

those exhibiting long-memory. Similar assumptions were also used by Delgado,

Hidalgo and Velasco (2005). Henceforth, it is assumed that the parameter estimator

�n is
p
n-consistent under the sequence of local alternatives H1n.
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Theorem 2 Assume that fXtg1t=�1 2 A and J 2 B: Under H1n 2 L,

n�1X
j=1

! (j) �n�n (j) =
n�1X
j=1

! (j) �n�0 (j)� (�n � �0)
0
n�1X
j=1

! (j) d�n (j) + op
�
n�1=2

�
:

Thus, asymptotically distribution-free tests can be obtained for any vector of

weight functions ! using a sample dependent transformation !̂n;�n such that

n�1X
j=1

!̂n;�n (j) d�n (j) = 0: (5)

Assuming that ! and d�n are not perfectly collinear, the least squares residuals

!̂n;�n satisfy (5) non trivially, where for any generic function g : Z! R,

ĝn;� (j) = g (j)� d� (j)
0

 
n�1X
k=1

d� (k) d� (k)
0

!�1 n�1X
k=1

d� (k) g (k) ; j = 1; 2; : : : : (6)

Theorem 3 Under the conditions in Theorem 2 and H1n 2 L,

 n (!̂n;�n)!d Nm

0@ 1X
j=1

!̂1;�0 (j) !̂1;�0 (j)
0

!�1=2 1X
j=1

!̂1;�0 (j) r (j) ; Im

1A :

We can justify inferences based on ��n�n (!̂n;�n) with the next corollary.

Corollary 2 Under conditions in Theorem 2 and _H1n;

	n�n (!̂n;�n)!d �
2
m (W (!̂1;�0)) :

Let r̂n;� be the residual function where g in (6) is replaced by r: Now, the rela-

tive e¢ ciency of ��n�0 (!̂n;�n) is given by W (!̂1;�0) =W (r̂1;�0) ; where W (r̂1;�0) =P1
j=1 r̂1;�0 (j)

2 =
P1

j=1 r (j) r̂1;�0 (j). Taking into account that
P1

j=1 r (j) !̂1;�0 (j) =P1
j=1 r̂1;�0 (j) !̂1;�0 (j) ; it is immediate that 	n�n (r̂n;�n) is also locally e¢ cient rel-

atively to its class.

Testing the hypothesis _H0 in the direction _H1n is equivalent to test H0 versus

H1n with r (j) = 
0d1�0 (j) ; where d� (j) =
�
d1� (j)

0 ; d2� (j)
0�0 is conformable with

respect to � = (�01; �
0
2)
0
: Then, using a restricted

p
n-consistent estimate �̂n of �0, so
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that
�
�̂n � �0

�0
d� (�) =

�
�̂2;n � �2;0

�0
d2� (�)� n�1=2
0d1� (�) under _H1n; the optimal

weights are estimated by r̂n;�̂n (j) = 
0d̂n;1�̂n (j) ; where

d̂n;1� (j) = d1� (j)�
n�1X
k=1

d1� (k) d2� (k)
0

 
n�1X
k=1

d2� (k) d2� (k)
0

!�1
d2� (j) ; (7)

i.e. d̂n;1� are the least squares residuals when projecting fd1� (j)gn�1j=1 on fd2� (j)g
n�1
j=1 :

Interestingly, ��
n�̂n

�
d̂n;1�̂n

�
is asymptotically equivalent to generalized LM tests

based on di¤erent objective functions considered in the literature, cf. Robinson

(1994), such as LMn = n � S1;n
�
~�n

�0
H11
n

�
~�n

�
S1;n

�
~�n

�
; where ~�n =

�
00; ~�

0
2;n

�0
is

the associated restricted (pseudo) maximum likelihood estimate (MLE) under _H0,

S1;n

�
~�n

�
= �

Pn�1
j=1 �n~�n (j) d1~�n (j) and H

11
n (�)

�1 =
Pn�1

j=1 d̂n;1� (j) d̂n;1� (j)
0 : For

example, when �n� (j) = ~�n� (j) ; LMn corresponds approximately to the LM test

based on the Whittle�s log-likelihood objective function, which is ~
n� (0) in (1),

whereas with �n� (j) = �̂n� (j) ; it corresponds to its time domain Gaussian likeli-

hood counterpart. Applying arguments in Robinson (1994), LMn !d �
2
q1

�

0H11

1 (�0)
�1 


�
:

The statistics 	n�̂n are asymptotically equivalent to LMn under H1n when using

optimal weights, as stated in the following Corollary, which is a straightforward

consequence of Theorem 2.

Corollary 3 Under conditions in Theorem 2 and _H1n;

	n�̂n

�
!̂n;�̂n

�
!d �

2
q1
(
0
�0 (!̂1;�0) 
) ;

where 
� (!) =
P1

j=1 d1� (j)! (j)
0
�P1

j=1 ! (j)! (j)
0
��1P1

j=1 ! (j) d1� (j)
0 ; and

	n�̂n

�
d̂n;1�̂n

�
= LMn + op (1) :

The tests��
n�̂n

�
!̂n;�̂n

�
are computed using any preliminary restricted

p
n-consistent

estimator �̂n under the sequence of alternatives fH1ngn�1. Thus, 	n�̂n
�
d̂n;1�̂n

�
is as-

ymptotically locally e¢ cient in its class for testing _H0 in the direction of _H1n; as well
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as asymptotically equivalent to the LM test, noticing that
�0
�
d̂1;1�0

�
= H11

1 (�0)
�1

because
P1

j=1 d1�0 (j) d̂1;1�0 (j)
0 =
P1

j=1 d̂1;1�0 (j) d̂1;1�0 (j)
0 :

When testing in the direction of innovations with MA (m) ; AR (m) or the auto-

correlation structure described in (2),

d1� (j) =
�
1fj=1g; : : : ; 1fj=mg

�0
(8)

in (7), so that S1;n (�) = �
�
�n;� (1) ; : : : ; �n;� (m)

�0
; and H11

n (�)
�1 equals

Im � (d2� (1) ; : : : ; d2� (m))0
 
n�1X
j=1

d2� (j) d2� (j)
0

!�1
(d2� (1) ; : : : ; d2� (m)) :

The corresponding LM statistic has the form

LMn = n
�
�n;~�n (1) ; : : : ; �n;~�n (m)

�
H11
n

�
~�n

� �
�n;~�n (1) ; : : : ; �n;~�n (m)

�0
and, by Corollary 3, is asymptotically equivalent to 	n;�̂n

�
d̂n;1�̂n

�
for any

p
n-

consistent estimator �̂n restricted under the null.

However, in the presence of estimated parameters, tests based on the sum of the

squares of the �rstm ERAs are not equivalent to LM tests, even asymptotically. By

contrast, 	n�̂n

�
d̂n;1�̂n

�
with d1� given by (8) can be written equivalently as the Box-

Pierce statistic BPn�̂n (m) ; but with �n�̂n substituted by the linear transformation

Ln;�̂n�n�̂n ; where for any generic function g : Z! R, Ln;� is the linear operator

Ln;�g (j) =
g (j)� d2� (j)

0
�Pn�1

i=j+1 d2� (i) d2� (i)
0
��1Pn�1

i=j+1 g (i) d2� (i)

1 + d2� (j)
0
�Pn�1

i=j+1 d2� (i) d2� (i)
0
��1

d2� (j)
;

j = 1; : : : ; n � 1 � q2. That is, Ln;�g (j) are the standardized forward recursive

residuals when projecting g on d2�; as de�ned by Brown, Durbin and Evans (1975).

We state formally this result in the next proposition.

Proposition 1 When testing _H1n using d̂n;1� in (7) for d1� in (8) ,

	n�

�
d̂n;1�

�
= n

mX
j=1

(Ln;��n� (j))
2 :
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3. TESTS BASED ON REGRESSION RESIDUALS

When fXtg1t=�1 are the unobserved errors of a multiple regression model, new

di¢ culties arise because of the presence of nonparametric nuisance functions when

computing the optimal weights. Suppose that

Yt = Z 0t�0 +Xt; t = �1;�2; : : : ;

where we assume �rst that fYt; Ztg1t=�1 is a 1+p-valued vector covariance stationary

time series, and �0 2 Rp is a vector of unknown parameters. We shall discuss the

case when Zt admits non-stochastic regressors later.

Let �n be a
p
n-consistent estimator of �0; e.g. the GaussianMLE. In order to test

the speci�cation of Xt in these circumstances, consider residuals Xt (�) = Yt��0Zt;

t = 0;�1; : : : ; i.e., Xt = Xt (�0) and

"t (�; �) = '� (B)Xt (�) =
'� (B)

' (B)
f"t + ' (B)Z 0t (�0 � �)g ; t = 0;�1; : : : ;

i.e., "t = "t (�0; �0) : As before, the autocorrelation function of f"t (�; �)g
1
t=�1 can be

estimated either by the sample autocorrelation function �̂n�� (j) = 
̂n�� (j)
�

̂n�� (0),

with 
̂n�� (j) = n�1
Pn

t=j+1 "t (�n; �n) "t�j (�n; �n) ; j = 0; 1; : : : ; or by, ~�n�� (j) =

~
n�� (j)
�
~
n�� (0) ; where ~
n�� (j) is de�ned as ~
n� (j) with IX replaced by IX(�):

Also in this Section, �n�� refers to either ~�n�� or �̂n��:

In order to identify the parameters, assume that '� (B)Zt, are predetermined,

i.e. E ("0 (�; �)Zj) = 0; j � 0; but not necessarily strictly exogenous. Then,

de�ning the cross-spectral density function between Xt (�) and Zt, fX(�);Z say, by

E (X0 (�)Zj) = (2�)
�1 R �

�� exp (i�j) fX(�);Z (�) d�; we note that

��� (j) =
E ("0 (�; �) � '� (B)Zj)

�2
=

1

2��2

Z �

��
exp (i�j)

fX(�);Z (�)

f� (�)
d�,

is then zero for j � 0; but allowed to be nonzero for j > 0. We also extend Class B

to Class C to incorporate equivalent conditions on ��� as on d�: Assuming that
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J 2 C; the next theorem is a straightforward extension of Theorem 3. Hence, its

proof is omitted.

Theorem 4 Assume that fXtg1t=�1 2 A, J 2 C and H1n 2 L,

n�1X
j=1

! (j) �n�n�n (j) =
n�1X
j=1

! (j) �n�0�0 (j)�
�
�0 � �n
�n � �0

�0 n�1X
j=1

! (j)

�
��0�0 (j)

d�0 (j)

�
+op (1) :

Thus, asymptotically distribution free test statistics are based on weights or-

thogonal to both ��0�0 and d�0 : To this end, we can consider the semiparametric

estimator

�n�� (j) =
1


n�� (0)
Re

(
2�

~n

~nX
k=1

exp (i�kj)
IX(�);Z (�k)

0

f� (�k)

)
;

or time domain versions. This avoids to parameterize fX(�);Z .

For any weight function ! and a smoothing number m; de�ne

!̂mn;�� (j) = ! (j)�
mX
k=1

! (k)

�
�n�� (k)

d� (k)

�0

�

264 mX
k=1

0B@ �n�� (k) �n�� (k)
0 �n�� (k) d� (k)

0

d� (k) �n�� (k)
0 d� (k) d� (k)

0

1CA
375
�1�

�n�� (j)

d� (j)

�
:

Thus, reasoning as before, 	mn;�n�n
�
!̂mn;�n�n

�
; with	mn;�� (!) =  mn;�� (!)

0  mn;�� (!)

and

 mn;�� (!) = n1=2

 
mX
j=1

! (j)! (j)0
!�1=2 mX

j=1

! (j) �n�� (j) ;

is expected to be asymptotically pivotal under the null and suitable regularity

conditions.

The convergence in distribution of  mn;��
�
!̂mn;�n�n

�
is proved assuming that

(Xt; Z
0
t)
0 belong to Class D; a multivariate extension of Class A; but allowing fX;Z

to be nonparametric. It is also assumed that

1

m
+

m

n1=2
! 0 as n!1 (9)
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to control the estimation e¤ect of ��0�0 (j) by �n�0�0 (j) ; j = 1; : : : ;m: The trimming

is needed because, unlike d�0 ; �n�0�0 depends on a sample average. Notice that the

trimming can be avoided by assuming a parametric function for fX;Z = fX(�0);Z ;

which is weaker than assuming that Zt is strictly exogenous, i.e. �n�0�0 (j) = 0 all

j � 1:

Next theorem provides the limiting distribution of  mn;��
�
!̂mn;�n�n

�
under local

alternatives

H1n : ��0�0 (j) =
r (j)p
n
+
an (j)

n
; j > 0 for some (�00; �

0
0)
0 2 �;

and shows that the test ��mn�n�n
�
r̂mn;�n�n

�
is locally e¢ cient in its class. We also

omit the proof given the similarities with that of Theorem 4.

Theorem 5 Assume that
�
(Xt; Z

0
t)
0	1
t=�1 2 D, J 2 C; and (9), under H1n 2 L;

 m;n
�
!̂mn;�n�n

�
!d Nm

0@ 1X
j=1

!̂1;�0�0 (j) !̂1;�0�0 (j)
0

!�1=2 1X
j=1

!̂1;�0�0 (j) r (j) ; Im

1A :

If the elements of Zt, t = 1; 2; : : : ; are nonstochastic, such as a polynomial trends

in t; and under the identi�ability conditions stated in the Appendix as Class E,

estimation of � does not a¤ect the asymptotic properties of ERA�s and weights

need not be orthogonalized. The reason is that the Zt are strictly exogenous in

this case, and the corresponding function ��0�0 (j) is zero for all leads and lags.

This fact, together with the assumption that �n is (at least)
p
n-consistent, renders

Theorems 3 and 4 valid in this set up.

4. A MONTE CARLO EXPERIMENT

This simulation study is based on 50,000 replications of ARFIMA (p; d; q) mod-

els under alternative designs. The innovations are independent standard normals.

14



Parameters are estimated using the restricted Whittle estimator under the null

hypothesis and we use time domain ERA�s.

We have computed the percentage of rejections using �ve distribution free tests:

1. Delgado, Hidalgo and Velasco (2005) omnibus test based on the transformed

Tp � process using the Cramer-von Mises criteria, CvM.

2. The e¢ cient LM test against di¤erent residual autocorrelation alternatives.

3. Our e¢ cient test 	̂n = 	n�n

�
d̂n;1�n

�
with d̂n;1�n corresponding to di¤erent

residual autocorrelation alternatives.

4. Our recursive portmanteau test (RPT) 	̂n, with d̂n;1�n corresponding to the

alternative of residuals autocorrelated according to an AR (m), cf. (8).

5. Box Pierce test, computed as proposed by Ljung and Box (1978), BPn (m).

Table 1 reports the percentage of rejections under the null of AR(1), MA(1) and

integrated of order d process (I (d)); with sample sizes of 200 and 500. We have

computed BP test for m = 10; 20 and 30: Choices of m around
p
n are expected to

yield test statistics with good size accuracy. We also provide results for m = 5 in

order to check size accuracy and power for small m:We report results for our RPT

using small values of m = 1; 2; 3; 5:

TABLES 1 & 2 ABOUT HERE

As it happens with the standard LMn test statistic considering AR (m) (or

MA (m) ; or Bloom�eld(m)) departures from the innovations white noise hypothe-

sis, the weighting matrix of the test statistic	n�n
�
d̂n;1�n

�
becomes near idempotent

as m increases. This fact prevents from using our RPT or the LM test with large

values of m in this situation. The size accuracy of the RPT is excellent for the
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small values reported in the three designs considered. The CvM and BP tests also

perform very well for a sample size of 500, but LMn and 	̂n su¤er very serious size

distortions for some designs.

The proportion of rejections under alternative hypotheses are reported in Table

2 for n = 200 and di¤erent designs. All the tests detect departures from the

AR(1) speci�cation in the direction of MA(1) innovations, as well as departures

from the MA(1) speci�cation in the direction of AR(1) innovations. However, I(d)

departures from the white noise hypothesis are better detected by the RPT than any

other test. The classical BP test rejects less than the others in this situation. It is

worth mentioning that departures form the AR(1) speci�cation with parameter 0.5

in the direction of I(d) correlated innovations are not detected by any test for the

sample sizes considered. Departures from the I(d) hypothesis are better detected.

However, the RPT works much better than the others in this case.

5. REAL DATA EXAMPLES

We analyze the speci�cation of two time series previously considered by Ve-

lasco and Robinson (2000) in the context of fractionally integrated models with

ARMA(p; q) and Bloom�eld(q) parametric speci�cations for the short memory com-

ponents. The former ones are the ARFIMA models and the later are called Frac-

tional Exponential models (FExp(q; d)).

The �rst data set consists of 500 annual time series of tree-ring widths in Ari-

zona from 548 A.D. onwards, obtained by D.A. Graybill in 1984 and maintained

by R. Hyndman at www-personal.buseco.monash.edu.au/�hyndman/TSDL. Lack

of stationarity is the main issue in the analysis of this series, since fractional para-

meters estimated were in general indistinguishable from the border value d = 0:5:

The di¤erent tests used in the Monte Carlo experiments above are used for model
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checking of the speci�cations considered by Velasco and Robinson (2000). We use

similar values of m as in the simulations. We also used Whittle estimators, but for

the goodness of �t analysis of FExp models we use frequency domain ERA, ~�n�n.

We work with the increments of the series and add one unit to the estimates of

the memory parameter, though results with raw data are qualitative similar and,

despite possible nonstationarity, similar inference rules could be justi�ed along the

lines of Velasco and Robinson (2000). The results of this analysis are contained in

Table 3. Basic models with none or only one short memory parameter are always

rejected. BP tests for m > 10 hardly reject any speci�cation, whereas our test 	̂n

clearly rejects these models for all m considered. The ARFIMA(1; d; 1) model is

also rejected and CvM test agrees with these conclusions. The remaining models

with two short run parameters are not rejected, being the FExp(2; d) preferred by

BIC criterion (apart form the ARFIMA(0; d; 0) which is heavily rejected by our

test).

TABLE 3 & 4 ABOUT HERE

The second time series is the chemical process temperature readings (series C)

from Box and Jenkins (1976). Beran (1995) estimates the memory parameter d,

rather than �tting an ARIMA model as Box and Jenkins suggest. As before, we

work with the increments. The ARFIMA(1; d; 0) speci�cation is strongly rejected by

our new test; while the BP test only rejects clearly the pure fractional speci�cation

for moderate m. However, the FExp models are not rejected and in particular

the FExp(1; d) speci�cation is preferred by BIC. In order to test Box and Jenkins�

speci�cation of an exact unit root, we test for long memory alternatives on the

increments using also optimal two sided tests ��
n;�̂
(!̂) with ! (j) = j�1: These tests

reject at � = 0:01 all short memory speci�cations which impose d = 1; and so

do CvM and 	̂n tests, though the later only provides little evidence against the
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FExp(2; 1) model. In general, the BP test displays very little power against long

memory alternatives for large or moderate m.
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APPENDIX A: TESTS USING FREQUENCY DOMAIN

AUTOCORRELATION ESTIMATES

Class A: The process fXtg1t=�1 de�ned by ' (B)Xt = "t belongs to Class A if:

(i) The process f"tg1t=�1 satis�es that E ("rt j Ft�1) = �r with �r constant (�1 = 0

and �2 = �2) for r = 1; : : : ; 4 and all t = 0;�1; : : : ; where Ft is the sigma algebra

generated by f"s; s � tg.

(ii) f (�) = j'
�
ei�
�
j�2 is positive and continuously di¤erentiable on (0; �], and

j (d=d�) log f (�) j = O (j�j�1) as j�j ! 0:

Class B. The parametric model J belongs to Class B if:

(i) f� (�) is continuously di¤erentiable in � 2 �, � 2 (0; �]; with derivative �� (�) :=

(@=@�) log f� (�) ; so that ��0 (�) is continuously di¤erentiable on (0; �]:

(ii)


@��0 (�) =@�

 = O (j�j�1) as j�j ! 0:

(iii) sup�2� k�� (�)k = O (log j�j) as j�j ! 0:

(iv) For all � 2 (0; �] and 0 < � < 1 there exists some K <1 such that

sup
f�:k���0k��=2g

1

k� � �0k2

����f�0 (�)f� (�)
� 1 + (� � �0)

0 ��0 (�)

���� � K

j�j� log
2 j�j:

(v) For d� (j) = (2�)
�1 R �

�� �� (�) cos (j�) d� and
_d� (j) = @d� (j) =@�; j = 1; 2; : : : ;

1X
j=1

d�0 (j) d�0 (j)
0 is �nite and positive de�nite; (10)

sup
�2�

kd� (j)k+ sup
�2�




 _d� (j)


 � Cj�1; j = 1; 2; : : : : (11)

18



Class C: The parametric model J described in Section 5 belongs to Class C if:

(i) All conditions of Class B hold.

(ii) Conditions (ii) � (iii) of Class B hold replacing �� (�) by fX(�)Z (�) =f� (�) ;

(�0; �0)
0 2 �:

(iii) Condition (v) of Class B holds with d� replaced by
�
�0��; d

0
�

�0
; (�0; �0)

0 2 �:

Class D: The (1 + p)-process fVtg1t=�1 ; 	(B)Vt = Ut, belongs to Class D if:

(i) The process fUtg1t=�1 satis�es that E (Utj Ft�1) = 0; E (UtU 0tj Ft�1) = �;

E (Ut;aUt;bUt;cj Ft�1) = �abc; E (Ut;aUt;bUt;cUt;dj Ft�1) = �abcd with �abc and �abcd

bounded, all a; b; c; d = 1; : : : ; 1 + p and all t = 0;�1; : : : ; where Ft is the sigma

algebra generated by fUs; s � tg.

(ii) fV (�) = j	
�
ei�
�
j�2 is continuously di¤erentiable on [��; 0) [ (0; �], and

k(d=d�) log fV (�)k = O (j�j�1) as j�j ! 0:

(iii) The elements of fV (�) =f (�) are bounded on [��; �] ; where f = ffV g[1;1] 2

A:

Class E: The nonstochastic regressors fZtg1t=�1 belongs to Class E if Dn =Pn
t=1WtW

0
t is positive de�nite for large enough n, Wt = ' (B)Zt; Zt = 0; t � 0:

Class L. The sequence of local alternatives fH1ngn�1 in (4) satis�es that

1X
j=1

r (j)2 <1 and
nX
j=1

an (j)
2 = O (1) as n!1: (12)

(i) The function l de�ned as l (�) = (2�)�1
P1

j=1 r (j) cos (�j) ; satis�es that jl (�)j �

K jlog �j and is di¤erentiable in (0; �] so that j(@=@�) l (�)j � K j�j�1 ; all � > 0:

(ii) The absolute value of gn (�) = (2�)
�1P1

j=1 an (j) cos (�j) is dominated by an

integrable function not depending on n for all n > n0:

We consider now the frequency domain case, where �n� (j) = ~�n� (j), and ! scalar,

to simplify exposition.
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Proof of Theorem 1. De�ne  n;k (!) = n1=2
�Pk

j=1 ! (j)
2
��1=2Pk

j=1 �n�0 (j)! (j) :

By Lemma 1,  n;k (!)!d N

��Pk
j=1 ! (j)

2
��1=2Pk

j=1 r (j)! (j) ; 1

�
as n!1 for

k �xed. Then, using Theorem 3.2 in Billingsley (1999) we only need to show that

lim
k!1

lim sup
n!1

Pr
��� n (!)�  n;k (!)

�� > �
�
= 0 (13)

for any � > 0: We �rst note that the innovation variance estimate is the same in

both  n;k (!) and  n (!) so we concentrate on the autocovariance estimates ~
n�0 (j) ;

j = 0; 1; : : :. Then we show that, underH1n; En1=2 j�n (j)j = O
�
n��
�
for some � > 0

and for each j = 1; : : : ; k; where �n (j) = ~
n�0 (j)�n�1=2�2r (j)� ~
n" (j) and ~
n" (j)

is de�ned as ~
n�0 (j) but replacing IX (�) f
�1
�0
(�) by I" (�) : Proceeding as in the proof

of Lemma 1,

~
n�0 (j) =
2�

~n

~nX
k=1

IX (�k)

f (�k)
cos (j�k)

�
1 + n�1=2l (�k)

	
+ n�1Vn (j) ;

where E jVn (j)j = O (1) because gn is uniformly integrable: Then, using Lemma 4

in DHV, for both s = 1 and s = l;

E

�����n1=22�~n
~nX

k=1

�
IX (�k)

f (�k)
� I" (�k)

�
s (�k) cos (j�k)

����� = O
�
n��
�

for some � > 0, uniformly in j; while E
���(2�=~n)P~n

k=1 I" (�k) l (�k) cos (j�k)� �2r (j)
��� =

O (n�1 log n) using Lemma 2 and Lemma 1 in DHV with r and l satisfying condi-

tions of H1n 2 L. Next, this shows that

sup
k

�����n1=2
n�1X
j=k+1

�n (j)! (j)

����� � n1=2
n�1X
j=1

j�n (j)j j! (j)j

is op (1) as n!1; uniformly in k; using (3). Finally, using again (3) and Lemma 2,

E

�����n1=2
n�1X
j=k+1

~
n" (j)! (j)

�����
2

= O

 
n�1X
j=k+1

!2 (j) + n�1
n�1X
j=k+1

n�1X
j0=k+1

j! (j)j j! (j0)j
!

and
���Pn�1

j=k+1 r (j)! (j)
��� are both o (1) as k ! 1; so (13) holds by Markov�s in-

equality. �
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Proof of Theorem 2. Write

n�1X
j=1

! (j) �n;�n (j) =

n�1X
j=1

! (j) �n�0 (j)� (�n � �0)
0
n�1X
j=1

! (j) d�n (j) +

5X
j=1

Rnj;

where Rn1 = (�n � �0)
0Pn�1

j=1 ! (j) fd�n (j)� d�0 (j)g ; Rn2 = (�n � �0)
0Pn�1

j=1 ! (j)

�fd�0 (j)� dn�0 (j)g ; Rn3 =
Pn�1

j=1 ! (j)
_dn�n (j) ; and

Rn4 =

�
1

�2
� 1

~
n�0 (0)

� n�1X
j=1

! (j) ~
n�0 (j) ;

Rn5 =

�
1

~
n�n (0)
� 1

�2

� n�1X
j=1

! (j) ~
n�n (j) ;

with dn� (j) = (2�=~n)��2
P~n

i=1 IX (�i) f
�1
� (�i)�� (�i) cos (�ij) ; and

_dn� (j) =
2�

~n�2

~nX
i=1

IX (�i)

f�0 (�i)

�
f�0 (�i)

f� (�i)
� 1 + (�n � �0)

0 ��0 (�i)

�
cos (�ij) :

Thus, it su¢ ces to prove that Rnj = op
�
n�1=2

�
; j = 1; : : : ; 5: Applying (12), (3),

and taking into account that �n is
p
n-consistent, Rn1 = op

�
n�1=2

�
: Write

Rn2 = (�n � �0)
0
n�1X
j=1

! (j)

(
d�0 (j)�

2�

~n

~nX
i=1

��0 (�i) cos (j�i)

)

+(�n � �0)
0
n�1X
j=1

! (j)

(
2�

~n�2

~nX
i=1

�
�2

2�
� IX (�i)

f�0 (�i)

�
��0 (�i) cos (j�i)

)
:

The �rst term on the left hand side is O (n�1 log n2) applying Lemma 1 in DHV

and (2), and the second term can be written as

(�n � �0)
0 2�

~n�2

~nX
i=1

�
�2

2�
� I" (�i)

�
��0 (�i)

n�1X
j=1

! (j) cos (j�i) (14)

+(�n � �0)
0 2�

~n�2

~nX
i=1

�
I" (�i)�

IX (�i)

f�0 (�i)

�
��0 (�i) cos (j�i) (15)

Applying (3),
���Pn�1

j=1 ! (j) cos (j�i)
��� = O (log n) uniformly in i. Thus, after applying

Markov�s inequality, �n��0 = Op

�
n�1=2

�
and (iii) of Class B, (14) is an op

�
n�1=2

�
;
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whereas (15) = op (n
�1) by DHV�s Lemma 4. Hence, Rn2 = op

�
n�1=2

�
: Applying

condition (iv) in Class B,




 _dn�n (j)


 � k� � �0k2
C

~n

~nX
i=1

jlog �ij2
IX (�i)

f�0 (�i)

because �n is
p
n-consistent, and we can take � = Kn�1=2 in , so that j�ij � K

when i � 1; reasoning as in the proof of Lemma 8 of DHV. Therefore,

kRn3k � k�n � �0k2
n�1X
j=1

j! (j)j C
~n

~nX
i=1

jlog �ij2
IX (�i)

f�0 (�i)
= op

�
n�1=2

�
on taking expectations and using k�n � �0k = Op

�
n�1=2

�
: Finally note that replac-

ing ~
n�n (0) by ~
n�0 (0) ; and this by �
2; makes no di¤erence by (50) in DHV, which

proves that Rn4 = op
�
n�1=2

�
and Rn5 = op

�
n�1=2

�
. �

Proof of Theorem 3. We note that by Theorem 2 and because of the exact

orthogonality of !̂n;�n and d�n ;  n (!̂n;�n) = � n (!̂n;�n) + op (1) ; with � n (!̂n;�n) =

n1=2
�Pn�1

j=1 !̂n;�n (j)
2
��1=2Pn�1

j=1 �n�0 (j) !̂n;�n (j) : So, we can apply Theorem 2, with

! substituted by !̂n;�n ; after noticing that
P1

j=1 !̂n;�n (j)
2 < 1; because of (3),

(v) in the de�nition of Class B, and using !̂n;�n (j) = ! (j) � d�n (j)
0 �n�n ; with

�n� =
�Pn�1

j=1 d� (j) d� (j)
0
��1Pn�1

j=1 d� (j)!� (j) ; and where �n;�n = Op (1) ; cf.

Lemma 3.

By Lemma 1, � n (!1;�0)!d N

��P1
j=1 !1;�0 (j)

2
��1=2P1

j=1 !1;�0 (j) r (j) ; 1

�
;

because 0 <
P1

j=1 !1;�0 (j)
2 <1 since ! and d�0 are not perfectly collinear, (3) and

(v) of Class B: Then the theorem follows if we show that � n (!̂n;�n)� � n (!1;�0) =

� n (!̂n;�n)� � n (!̂n;�0) + � n (!̂n;�0)� � n (!1;�0) is op (1). First,

� n (!̂n;�n)� � n (!̂n;�0) = n1=2
Pn�1

j=1 �n�0 (j) f!̂n;�n � !̂n;�0 (j)g�Pn�1
j=1 !̂n;�n (j)

2
�1=2

+n1=2
n�1X
j=1

�n�0 (j) !̂n;�0 (j)

8<:
 
n�1X
j=1

!̂n;�n (j)
2

!�1=2
�
 
n�1X
j=1

!̂n;�0 (j)
2

!�1=29=; ;
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where !̂n;�n (j)�!̂n;�0 (j) = d�0 (j)
0 ��n�0 � �n�n

	
+fd�0 (j)� d�n (j)g

0 �n�n : Using a

MVT argument and (11), kd�0 (j)� d�n (j)k � C k�n � �0k j�1, and


�n�0 � �n�n



 =
Op (k�n � �0k) using the rates of decay of !; d and _d: Then

n1=2
n�1X
j=1

�n�0 (j) f!̂n;�n � !̂n;�0 (j)g = n1=2
n�1X
j=1

�n�0 (j) d�0 (j)
0 ��n�0 � �n�n

	
+n1=2

n�1X
j=1

�n�0 (j) fd�0 (j)� d�n (j)g
0 �n�n

is op (1) ; using the MVT, that n1=2
Pn�1

j=1 �n�0 (j) d�0 (j) = Op (1) ;


�n�0 � �n�n



 =
Op (k�n � �0k), and




n1=2

n�1X
j=1

�n�0 (j) fd�0 (j)� d�n (j)g





 � C k�n � �0kn1=2

n�1X
j=1

j�n�0 (j) jj
�1;

which is Op

�
n�1=2 log n

�
= op (1), proceeding as in the proof of Theorem 1.

Next, � n (!̂n;�0)� � n (!1;�0) is

n1=2
Pn�1

j=1 �n�0 (j) f!̂n;�0 (j)� !1;�0 (j)g�Pn�1
j=1 !̂n;�0 (j)

2
�1=2 (16)

+

8<:
 
n�1X
j=1

!̂n;�0 (j)
2

!�1=2
�
 
n�1X
j=1

!1;�0 (j)
2

!�1=29=;n1=2
n�1X
j=1

�n�0 (j)!1;�0 (j) (17)

and we �nd that, cf. Lemma 3,

E

 
n1=2

n�1X
j=1

~
n�0 (j) f!̂n;�0 (j)� !1;�0 (j)g
!2
�

n�1X
j=1

f!̂n;�0 (j)� !1;�0 (j)g
2

+
C

n

n�1X
j=1

n�1X
j0=1

j!̂n;�0 (j)� !1;�0 (j)j j!̂n;�0 (j0)� !1;�0 (j
0)j

which is o
�Pn�1

j=1 kd�0 (j)k
2
�
+ n�1o

�Pn�1
j=1 kd�0 (j)k

�2
= o (1) as n ! 1; so that

(16) is op (1) :

On the other hand, using Lemma 3, the term in braces in (17) is o (1) as n!1;

so (17) is also op (1) and the theorem follows. �
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Proof of Corollary 3. The �rst part follows as Theorem 3 whereas the second one,

follows noticing that n1=2
Pn�1

j=1 �n�̂n (j) d̂n;1�̂n (j) = n1=2
Pn�1

j=1 �n�0 (j) d̂n;1�̂n (j) +

op (1) using Theorem 2 and that d̂n;1�̂n (j) and dn;2�̂n (j) are orthogonal. �

Proof of Proposition 1. First notice that
Pm

j=1 [Ln;��n� (j)]
2 = Sn�1 � Sn�1�m

using (5) in Brown et al. (1975), where

Sn�1�m = �
0
n�1

0B@
0B@ 0 0

0 In�1�m

1CA�
0B@ 0

Xn�1m+1

1CA�Xn�10m+1Xn�1m+1

��10B@ 0

Xn�1m+1

1CA
01CA�n�1

is the sum of least squares residuals in the linear projection of
�
�n;� (j)

	n�1
j=m+1

on Xn�1m+1; where Xkj = (d2;� (j) ; : : : ; d2;� (k))
0 ; k � j; �k =

�
�n;� (1) ; : : : ; �n;� (k)

�0
and 0 is a conformable matrix of zeros. Note that the lack of perfect colinearity

between d1� and d2�, cf. (10), implies that
P1

i=m+1 d2� (i) d2� (i)
0 is positive de�nite

for d1� (j) =
�
1fj=1g; : : : ; 1fj=mg

�0
.

Thus, it su¢ ces to show that 	n�
�
d̂n;1�

�
= n (Sn�1 � Sn�1�m) : To this end,

write

	n�

�
d̂n;1�

�
= n�0n�1PnV

0
mA

�1
m VmPn�n�1

where Vm = (d1 (1) ; : : : ; d1 (m))
0 =

�
Im 0

�
; Am = Im � Xm1

�
Xn�101 Xn�11

��1Xm01
and Pn = In�1 � Xn�11

�
Xn�101 Xn�11

��1Xn�101 . Then we can use the fact that A�1m =

Im + Xm1
�
Xn�10m+1Xn�10m+1

��1Xm01 to show that this is n (Sn�1 � Sn�1�m) after standard

algebraic manipulations: �

APPENDIX B: TESTS USING TIME DOMAIN

AUTOCORRELATION ESTIMATES

For time domain analysis we only describe the main di¤erences. We use the

simplifying assumption that Xt = "t = 0 for t � 0; cf. (2) in Robinson (1994), so

that Lemmas 1 and 2 follow at once for 
̂n� under H0 using the martingale property
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of "t. Then assuming that the sequence of alternatives fH1ngn�1 belongs to Class

L�; we can show Lemma 1 and then Theorem 1 under H1n:

Class L�. H1n 2 L and � (z) =
P1

j=0 �jz
j := '�0 (z)'

�1 (z) satis�es � (0) = 1 and

�j = n�1=2r (j) + n�1an (j) ; j = 1; 2; : : : ; where jr (j)j � Kj�1; j = 1; 2; : : : ; and

for all n su¢ ciently large jan (j)j � Kj��1; j = 1; 2; : : : ; for all � > 0:

Regularity conditions on J for the analysis of tests based on time domain au-

tocorrelations �̂n�n are similar to those for frequency domain, since, assuming that

'�
�
ei�
�
is di¤erentiable so that �� (z) = (@=@�) log'� (z), �� (0) = 0 all �; and

expanding �� (z) =
P1

j=1 ��;jz
j; we �nd that

d� (j) = �
1

�

Z �

��
Re
�
��
�
ei�
�	
cos (j�) d� = ���;j:

Theorems 2 and 3 for �̂n�n follow replacing condition (iv) in Class B by (iv�):

(iv�) For all 0 < � < 1 there exists some K <1 such that  � (z) =
P1

j=0  �;jz
j :=

'� (z) ='�0 (z) � 1 � (� � �0)
0 ��0 (z) satis�es that supf�:k���0k��=2g k� � �0k�2

��'�;j��
� Kj��1 log2 j; j = 1; 2; : : : :

APPENDIX C: LEMMATA

Lemma 1 n1=2
�
~�n;�0 (1) ; : : : ; ~�n;�0 (k)

�0 !d N
�
(r (1) ; : : : ; r (k))0 ; Ik

�
; underH1n 2

L, for k �xed and fXtg1t=�1 2 A.

Proof. We only consider the asymptotic distribution of n1=2
�
~
n�0 (1) ; : : : ; ~
n�0 (k)

�0
,

since ~
n�0 (0) !p �2 under H1n; see e.g. (51) in the proof of Theorem 2 in

DHV. First, we write f�0 (�)
�1 = f (�)�1

�
1 + n�1=2hn (�)

	
; where hn (�) = l (�) +

n�1=2gn (�) satis�es that
R �
0
hn (�) cos (�j) d� = r (j) + n�1=2an (j) : Then, under

H1n,

~
n�0 (j) =
2�

~n

~nX
k=1

IX (�k)

f (�k)
cos (�kj)

�
1 +

l (�k)

n1=2
+
gn (�k)

n

�
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Now, reasoning as in the proof of Theorem 5 of DHV and using that gn is integrable,

~
n�0 (j) = ~
n" (j) + n
�1=2�2r (j) + op

�
n�1=2

�
; cf. also the proof of Theorem 1. The

convergence then follows as in Lemma 7(b) of DHV, using Lemma 2. �

Lemma 2 Assume that f"tg1t=�1 is as in Class A. Then nE
�
~
2n" (j)

�
= �4 +

O (n�1) ; j = 1; 2; : : : ; and nE [~
n" (j) ~
n" (j0)] = O (n�1) ; j 6= j0; as n!1:

Proof. It follows by direct calculation of the moments of I" (�j), cf. Brillinger

(1980, Theorem 4.3.1) and approximation of sums by integrals. �

Lemma 3 Under (3), (10) and (11), uniformly in j = 1; 2; : : : ; j!̂n;�0 (j)� !1;�0 (j)j

= o (kd�0 (j)k) and
��!̂n;�0 (j)2 � !1;�0 (j)

2
�� = o

�
kd�0 (j)k

2 + kd�0 (j)k j! (j)j
�
; as

n!1:

Proof. Follows using standard ordinary least squares algebra. �
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Table 1. Empirical size of LM and Portmanteau tests at 5% of signi�cance.

CvM LM 	̂n 	̂n; "�t� AR (m) BP n�n (m)

m 1 2 3 5 5 10 20 30

n = 200

H0: AR(1)
�10 "�t �I(d)
-0.8 4.7 3.4 3.4 4.9 4.8 4.6 4.3 5.5 5.5 6.0 6.6
-0.5 4.4 3.2 3.3 4.8 4.7 4.5 4.2 5.1 5.2 5.7 6.3
0.0 4.1 2.5 2.5 5.0 4.6 4.4 4.2 4.9 5.0 5.7 6.3
0.5 3.6 1.1 0.7 4.9 4.7 4.5 4.2 4.8 5.1 5.6 6.3
0.8 3.1 4.9 3.0 4.8 4.6 4.6 4.4 5.0 5.2 5.8 6.3

H0: MA(1)
�10 "�t �I(d)
-0.8 4.2 3.5 3.3 4.5 4.4 4.2 4.1 6.7 6.3 6.4 7.0
-0.5 4.2 3.0 3.1 4.5 4.5 4.4 4.1 5.1 5.1 5.7 6.3
0.0 4.1 2.3 2.3 4.7 4.4 4.4 4.1 4.8 5.0 5.6 6.2
0.5 3.6 3.3 0.6 4.6 4.4 4.2 4.1 4.8 5.0 5.5 6.2
0.8 3.1 24.5 3.6 4.6 4.4 4.3 4.3 6.3 5.9 6.1 6.6

H0: I(d)
d0 "�t �AR(1)
0.0 3.5 4.9 4.3 4.3 3.8 3.5 3.4 5.0 5.2 5.7 6.4
0.2 3.5 4.9 4.3 4.3 3.8 3.4 3.3 5.0 5.2 5.7 6.3
0.4 3.6 5.1 4.2 4.2 3.7 3.4 3.2 5.0 5.1 5.6 6.2

n = 500

H0: AR(1)
�10 "�t �I(d)
-0.8 5.1 4.3 4.3 5.1 5.0 5.0 4.8 5.4 5.3 5.5 5.8
-0.5 5.0 4.1 4.1 5.0 5.0 4.9 4.7 5.1 4.9 5.4 5.7
0.0 4.6 3.6 3.6 5.0 5.1 4.8 4.8 5.1 4.9 5.4 5.6
0.5 4.5 2.0 2.1 5.0 5.0 4.9 4.8 5.1 5.0 5.3 5.7
0.8 4.3 4.2 3.8 5.1 4.8 5.0 4.9 5.3 5.1 5.4 5.7

H0: MA(1)
�10 "�t �I(d)
-0.8 4.9 4.3 4.2 5.0 4.8 4.8 4.6 6.1 5.6 5.7 6.0
-0.5 4.9 4.0 4.1 4.9 5.0 4.8 4.7 5.2 5.0 5.4 5.7
0.0 4.6 3.5 3.5 4.8 5.0 4.8 4.6 5.0 4.9 5.3 5.7
0.5 4.5 3.2 1.8 4.9 4.8 4.8 4.7 5.0 5.0 5.3 5.6
0.8 4.3 17.4 3.8 4.9 4.7 4.8 4.7 5.8 5.4 5.5 5.8

H0: I(d)
d0 "�t �AR(1)
0.0 4.5 5.0 4.7 4.7 4.4 4.3 4.1 5.3 5.1 5.4 5.7
0.2 4.5 4.9 4.6 4.6 4.4 4.3 4.1 5.2 5.1 5.4 5.7
0.4 4.6 5.3 4.5 4.5 4.3 4.2 4.0 5.3 5.1 5.4 5.7
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Table 2. Empirical power of LM and Portmanteau tests at 5% of signi�cance.

CvM LM 	̂n 	̂n; "�t �AR(m) BP n�n (m)

m 1 2 3 5 5 10 20 30

H0 : AR(1); �10 = 0: H1 : "�t �MA(1). n = 200
�10 "�t �MA(1)
-0.8 100. 99.8 99.8 99.8 100. 100. 100. 100. 99.6 94.9 89.1
-0.5 80.8 83.6 80.6 80.6 78.9 71.4 59.9 66.7 49.9 38.3 33.8
0.2 7.1 12.9 9.7 9.7 8.0 7.1 6.1 7.3 6.7 6.9 7.5
0.5 70.8 75.9 80.8 80.8 79.2 73.0 61.8 68.7 51.7 39.2 34.7
0.8 99.6 99.5 99.8 99.8 100. 100. 100. 100. 99.6 95.2 89.3

H0 : MA(1); �10 = 0: H1 : "�t �AR(1). n = 200
�10 "�t �AR(1)
-0.8 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100.
-0.5 84.4 78.1 81.2 81.2 82.3 77.3 69.7 74.2 61.9 50.4 44.9
0.2 7.2 25.0 6.9 6.9 6.1 5.6 4.9 5.9 5.6 6.1 6.7
0.5 77.1 86.9 81.5 81.5 80.4 75.1 66.9 72.1 59.3 48.2 43.0
0.8 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100.

H0 : I(d): H1 : "�t � AR(1): n = 200

�10 "�t �AR(1)
d0= 0:0

0.2 11.3 37.2 34.3 34.3 23.2 6.1 13.0 17.5 14.3 12.5 12.4
0.5 26.8 79.8 77.7 77.7 68.3 56.8 43.7 47.4 41.2 31.7 28.6
0.8 9.8 55.4 51.4 51.4 46.4 36.7 24.4 24.4 26.4 21.4 20.2

d0= 0:2

0.2 11.1 36.7 34.2 34.2 23.1 17.1 13.0 17.4 14.3 12.5 12.4
0.5 26.7 79.1 77.7 77.7 68.2 56.8 43.6 47.3 41.2 31.6 28.4
0.8 9.6 61.1 53.7 53.7 49.4 40.6 28.3 24.8 26.6 21.5 19.9

H0 : AR(1): H1 : "�t � I(d): n = 200

d0 "�t � I (d)
�10= 0:0

0.1 8.2 10.2 8.7 8.4 8.1 7.8 7.1 8.0 7.5 7.5 7.8
0.2 19.9 29.9 26.5 22.4 21.8 21.1 19.3 20.4 18.4 15.8 15.0
0.3 36.0 47.5 42.5 42.5 42.3 40.6 37.8 37.2 35.0 30.0 26.8
0.4 48.8 46.1 38.8 60.5 60.0 57.6 53.7 49.1 48.4 41.8 37.3

�10= 0:5

0.1 3.6 2.7 1.0 5.0 4.8 4.6 4.3 5.0 5.1 5.8 6.4
0.2 3.3 4.7 1.5 5.5 5.3 5.2 5.3 5.5 5.7 6.2 6.7
0.3 3.6 8.3 2.6 7.8 6.9 6.8 6.5 7.0 6.8 7.1 7.5
0.4 5.7 16.2 7.1 14.8 11.6 10.9 9.9 11.7 9.6 8.9 9.1

30



Table 3. Ring tree Arizona data, n = 500: Goodness of �t analysis for ring tree

data based on fractionally integrated models. �;�� ;��� denote signi�cant values at

10%, 5% and 1% respectively. Standard errors of d estimates are in parenthesis.

BIC d̂
(se)

CvM 	̂n; "�t �AR(m) BP n�n (m)

m 1 2 3 5 5 10 20 30

model H0 :ARFIMA(p; d; q)

(0; d; 0) -3.5234 :437
(:035)

.62 2.28 18.03��� 19.70��� 20.10��� 13.26�� 17.06�� 28.90� 41.90

(1; d; 0) -3.5120 :459
(:054)

1.57� 14.60��� 16.49��� 16.60��� 17.24��� 13.56��� 16.55�� 26.51� 31.06

(2; d; 0) -3.5215 :563
(:057)

.71 2.23 2.27 3.09 5.11 2.95 6.94 15.50 18.31

(0; d; 1) -3.5160 :647
(:050)

0.91 1.01 6.66�� 7.02� 10.52� 10.14�� 12.87 18.62 20.69

(0; d; 2) -3.5216 :649
(:107)

1.17� .29 1.72 1.88 5.54 2.23 6.61 14.30 16.76

(1; d; 1) -3.5130 :691
(:124)

.26 5.07�� 5.22� 6.63� 8.76 6.67�� 10.58 16.86 19.16

H0 : FExp(m; d)

FExp(1; d) -3.5122 :666
(:056)

1.70�� .00 11.57��� 12.18��� 13.97�� 13.20��� 17.20�� 26.40� 30.08

FExp(2; d) -3.5233 :618
(:071)

.70 .00 .00 .42 1.88 1.67 8.05 17.90 21.11
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Table 4. Chemical C data, n = 226: Goodness of �t analysis for ring tree data

based on fractionally integrated models. �;�� ;��� denote signi�cant values at 10%,

5% and 1% respectively. Standard errors of d estimates are in parenthesis.

BIC d̂
(se)

CvM 	̂n; "�t �AR(m) BP n�n (m)

m 1 2 3 5 5 10 20 30

model H0 :ARFIMA(p; d; q)

(0; d; 0) 3.7949 :871
(:052)

4.53��� 20.87��� 20.89��� 21.69��� 23.44��� 23.58��� 27.22��� 29.03�� 30.61

(1; d; 0) 3.7176 1:076
(:065)

1.37� 6.88��� 6.92�� 8.32�� 9.71� 9.61�� 10.87 12.28 13.41

(2; d; 0) 3.7101 1:227
(:075)

.31 1.50 1.54 2.14 3.57 3.16 3.54 4.71 5.81

(0; d; 1) 3.7120 1:249
(:159)

.97 6.34�� 8.34�� 8.83�� 9.32� 8.17�� 8.82 9.71 10.76

(0; d; 2) 3.7054 1:313
(:126)

.11 1.53 1.83 2.00 2.08 1.55 1.87 2.96 4.33

(1; d; 1) 3.7133 1:326
(:144)

.03 2.50 3.48 3.69 3.88 3.23 3.54 4.51 5.70

H0: FExp(m; d)

FExp(1; d) 3.6967 1:153
(:083)

.75 .96 2.35 3.03 4.20 4.81 5.14 6.90 7.69

FExp(2; d) 3.7196 1:165
(:106)

.00 2.16 2.75 3.37 5.06 4.94 4.89 6.49 7.28

	n

�cj�1� H0: Unit Root (d = 1)

ARFIMA(2; 1; 0) 3.7236 87.1��� 1.21� 3.06� 8.06�� 11.11�� 14.59�� 12.80��� 16.25�� 18.34 20.03

ARFIMA(0; 1; 2) 3.7104 6.2��� 1.65�� 5.16�� 7.52�� 9.08�� 10.65� 9.06�� 11.47 13.45 14.86

FExp(2; 1) 3.7216 7.7��� 1.73�� - - 5.24 10.66� 10.93�� 13.27� 16.92 17.73
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