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1 Introduction

This is a companion paper to Cabrales and Serrano (2010), referred to as CS from now on.1

As in that paper, we continue to study the implementation problem under a plausible class

of learning processes, that of better-response dynamics (BRD) and perturbations thereof.

Thus, we postulate a behavioral assumption by which agents (or generations of agents)

interact myopically within a given mechanism, and adjust their actions in the direction of

better-responses. A first criterion for successful implementation is the convergence of the

better-response process to a rest point or to a set of rest points. When the outcome of a

social choice function (SCF) is the only limit of the BRD in a mechanism for any allowed

environment, we shall say that the SCF is implementable in recurrent strategies of BRD. CS

provides necessary and sufficient conditions for implementability in this sense, among which

the most salient condition is quasimonotonicity, a variant of Maskin monotonicity.

Those results on recurrent implementation in BRD are obtained for a general class of

preferences and will stand for any perturbed process. The latter means that, if one were

to perturb the BRD via mistakes (by allowing agents not to use a better response some-

times), an SCF that is implementable in recurrent strategies would also be implementable

in stochastically stable strategies of any perturbation of BRD. That is, the outcomes pre-

scribed by the SCF are the states of minimum stochastic potential (see, e.g., Young (1998,

Chapter 3)), for any perturbed process. Therefore, quasimonotonicity is identified as the

key condition to essentially characterize very robust implementation with respect to myopic

BRD processes. In this way, these conclusions are immune to the Bergin and Lipman (1996)

critique of uniqueness results in stochastic evolutionary implementation.

The current paper considers how to obtain implementability results in these contexts once

one moves beyond quasimonotonicity. Since implementability in recurrent strategies of BRD

will not be possible, given the necessity of that condition, it follows that the permissive results

we describe here must rely on a different class of dynamics, such as certain perturbations of

BRD. Specifically, strengthening the assumptions on preferences and mistakes processes, we

show that there are mechanisms for evolutionary implementation under relatively permissive

conditions on SCFs.

We present here a result that uses uniform mutations or “mistakes” in the BRD process.2

1To avoid obvious repetitions here, we refer to CS for an extensive literature review.
2In our working paper version (available at http://www.eco.uc3m.es/˜acabrales/research/CS-stochimple-

2.pdf) we also show that, under a variant of the “more serious mistakes are less likely” assumption, any

ε-secure SCF (a version of the NWA condition found in CS formulated for economic environments) is imple-
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It states that, under uniform mistakes (“all mistakes are equally likely”) and an assumption

on diversity of preferences, any Pareto efficient and ε-secure SCF can be reached if there are

at least five agents in the environment; if the required preference diversity happens near the

zero bundle, the Pareto assumption can be dispensed with altogether.

The findings in this paper, vis-á-vis those in CS, should not be interpreted as “on-the-

one-hand, on-the-other-hand” type of results. We formalize a genuine tradeoff for the social

planner. If the SCF he wishes to implement satisfies quasimonotonicity, he knows that he

has an evolutionarily robust mechanism for implementation at his disposal. If not, there

exist mechanisms that are robust under evolution, but more requirements are needed from

other fundamentals of the problem. In addition, stochastically stable outcomes may require

a very long time for convergence (see e.g. Ellison 2000). Hence a high degree of patience

on the attainment of social goals is required for the social planner and society as a whole.

Thus, unlike what some of the previous implementation literature has suggested, there is no

“free lunch” in terms of implementability.

Our main insights already described are confirmed in environments with incomplete in-

formation, and some others are obtained therein. First, incentive compatibility arises as

a necessary condition for stable implementation in our sense, whatever the perturbation

one wishes to use, including no perturbation at all, of interim BRD. As shown in CS, if

one wishes to implement in recurrent strategies, faithful to the robustness line of thinking

enunciated above, the condition of Bayesian quasimonotonicity is also necessary. Moreover,

that paper shows that incentive compatibility, Bayesian quasimonotonicity and ε-security

are also sufficient for implementation in recurrent strategies of BRD processes when there

are at least three agents. In contrast, we show here that under weak preference diversity in

the environment, the condition of Bayesian quasimonotonicity can be entirely dropped. This

can be done if the planner is satisfied with implementation in stochastically stable strategies

under uniform mistakes, and if there are at least five agents. Thus, we find the same tradeoff

described earlier: evolutionary implementation results more permissive than those relying

on the quasimonotonicity conditions are possible, but they come at a cost in terms of their

robustness.

mentable in stochastically stable strategies of the corresponding perturbed BRD process if there are at least

three agents.
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2 Preliminaries

Let N = {1, . . . , n} be a set of agents. For simplicity, we concentrate on economic environ-

ments. Let agent i’s consumption set be a finite set, Xi ⊂ Rl
+ (where we assume 0 ∈ Xi,

for all i ∈ N). One can specify that each agent holds initially the bundle ωi ∈ Xi with∑
i∈N ωi = ω (private ownership economies), or simply that there is an aggregate endow-

ment of goods ω (distribution economies). The set of alternatives is the set of allocations:

Z = {(xi)i∈N ∈
∏

Xi :
∑
i∈N

xi ≤ ω}.

Let θ = (θi)i∈N be a preference profile, and Θ be the set of allowable preference profiles.

For now, we shall describe environments with complete information. (Section 4 will extend

the analysis to incomplete information environments.) We make the following assumptions

on preferences:

(1) No consumption externalities: θi : Xi×Xi 7→ Xi, that is, an agent’s preference relation

depends on the bundle of goods that he consumes, and not on other agents’ bundles.

(2) Strictly increasing preference: For all i and for all xi ∈ Xi, if yi ≥ xi, yi �θi
i xi.

3 Note

how this implies that 0 is the worst bundle for every agent.

A social choice function (SCF) assigns an outcome to each θ ∈ Θ. We shall denote an

SCF by f , and thus, f : Θ 7→ Z.

A mechanism G = ((Mi)i∈N , g), where Mi is agent i’s (finite) message set, and g :∏
i∈N Mi 7→ Z is the outcome function. A Nash equilibrium of the mechanism in state θ is

a profile of messages m∗ such that for every i ∈ N , g(m∗) �θi g(mi,m
∗
−i) for all mi 6= m∗i .

A strict Nash equilibrium is a Nash equilibrium in which all these inequalities are strict.

Given a profile m ∈
∏

i∈N Mi, agent j’s (weak) better-response to m is any m′j such that

g(m′j,m−j) �θj g(m).

We concentrate on the following class of SCFs. An SCF f is said to be ε-secure if there

exists ε > 0 such that for each θ, and for each i ∈ N , fi(θ) ≥ (ε, . . . , ε)� 0.

The condition of ε-security amounts to establishing a minimum threshold of living stan-

dards in the consumption of all commodities. We shall think of ε as being a fairly small

number. Then, one could easily justify the property on normative grounds.

3For vectors xi, yi ∈ Xi, we use the standard conventions: xi ≥ yi whenever xil ≥ yil with at least one

strict inequality; and xi � yi whenever xil > yil for every commodity l.
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Next, we turn to dynamics, the central approach in our paper. The mechanism will be

played simultaneously each period by myopic agents. Or, in an interpretation closer to the

evolutionary tradition, the mechanism will be played successively each period by generations

of agents who live and care for that period only. Given a mechanism, we take the set

M =
∏

i∈N Mi of message profiles as the finite state space. We shall begin by specifying an

unperturbed Markov process on this state space, i.e., a matrix listing down the transition

probabilities from any state to any other in a single period.4 Such a process will typically

have multiple long-run predictions, which we call recurrent classes. A recurrent class is a

set of states that, if ever reached, will never be abandoned by the process, and that does

not contain any other set with the same property. A singleton recurrent class is called an

absorbing state.

The unperturbed Markov process that we shall impose on the play of the mechanism over

time is the following better-response dynamics (BRD). In each period t, each of the agents is

given the chance, with positive, independent and fixed probability, to revise his message or

strategy. Simultaneous revision opportunities for different agents are allowed. Let m(t) be

the strategy profile used in period t, and say agent i is chosen in period t. Then, denoting

by θi agent i’s true preferences, agent i switches with positive probability to any m′i such

that g(m′i,m−i(t)) �
θi
i g(m(t)).

CS study the problem of implementability in recurrent strategies of BRD processes, and

provide necessary and sufficient conditions for it. The key condition that underlies much of

their analysis is quasimonotonicity, a variant of Maskin monotonicity. One way to justify

the results in the current paper is the search of conditions under which implementability

in terms of perturbed BRD processes may expand the set of implementable SCFs beyond

quasimonotonicity. The problem, though, in trying to implement an SCF that violates quasi-

monotonicity is that, since it cannot be done in recurrent classes of BRD, initial conditions

will matter. Thus, some paths in the BRD dynamics may lead to the SCF outcome, but

others will not.

Indeed, the dependence of long-run predictions of unperturbed Markov processes on ini-

tial conditions is sometimes perceived as a drawback of this analysis. One way out is to

perturb the Markov process. The class of perturbations that we are interested in specify a

Markov matrix of transition probabilities that is both irreducible and aperiodic. Irreducibil-

ity means that it is always possible to transit from any state to any other in a finite number

4For complete formal definitions of Markov chains, and related terms (recurrent classes, absorbing states,

irreducibility, aperiodicity, etc.) see e.g. Karlin and Taylor (1975), chapter 2.
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of periods. Aperiodicity is implied because there is a chance that the state does not change

from one period to the next. For an irreducible and aperiodic process, there is a unique

stationary distribution with the following two properties. First, starting from any initial

strategy profile, the probability distribution on period t strategy profiles is known to ap-

proach that stationary distribution as t→∞. And second, the stationary distribution also

represents the proportion of time spent on each state over an infinite time horizon. If one

denotes by µε the stationary distribution of the ε-perturbed Markov process and takes the

limit as ε→ 0, one gets that the limε→0 µ
ε = µ∗ exists and is one of the multiple stationary

distributions of the unperturbed process. We shall refer to the states in the support of µ∗

as the stochastically stable states of the perturbed process, which are interpreted as the only

states in which the perturbed process spends a positive proportion of time in the long run

when the amount of noise ε is positive, but negligible.

Thus, the planner, who has a long run perspective on the social choice problem, wishes

to design an institution or mechanism such that, when played by myopic agents who keep

adjusting their actions in the direction of better-responses most of the time, but who may

also make mistakes, the socially desirable outcome as specified by the SCF, is the only

stochastically stable state of the process. This logic suggests the following implementability

notion.

An SCF f is implementable in stochastically stable strategies (of perturbed BRD) if there

exists a mechanism G such that, for every θ ∈ Θ, a perturbation of the BRD process applied

to its induced game when the preference profile is θ has every f(θ) as the unique outcome

supported by stochastically stable strategy profiles.

Therefore, when f is implementable in stochastically stable strategies of a perturbed

BRD process, in the very long run, for each θ, the proportion of time spent by the process

at a = f(θ) is 1.

Before closing the section, we go over some basic concepts in perturbed Markov processes,

which we will use in the sequel. In order to identify the stochastically stable strategy pro-

files of any perturbed BRD process, we will use the characterization of stochastic stability

provided by Young (1993) and Kandori, Mailath and Rob (1993), based on the techniques

developed by Freidlin and Wentzell (1984).

Call the unperturbed Markov BRD process P 0 defined on the finite state space M . We

define a perturbed process of P 0 as follows: fixing ε∗ > 0, for each ε ∈ (0, ε∗), the process P ε

is a regular perturbed Markov process if P ε is irreducible for every ε ∈ (0, ε∗) and for every
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m,m′ ∈M , P ε(m,m′) approaches P 0(m,m′) at an exponential rate. That is,

lim
ε→0

P ε(m,m′) = P 0(m,m′)

and

∃ε > 0|P ε(m,m′) > 0 implies ∃r(m,m′) ≥ 0|0 < lim
ε→0

P ε(m,m′)

εr(m,m′)
<∞.

The real number r(m,m′) is called the resistance of the transition from m to m′. Note that

it is uniquely defined, i.e., there cannot be two exponents satisfying the above condition.

Note also that P 0(m,m′) > 0 if and only if r(m,m′) = 0: transitions that can occur

under P 0 have zero resistance. For convenience, we shall assume that r(m,m′) = ∞ if

P ε(m,m′) = P 0(m,m′) = 0 for every ε ∈ (0, ε∗) (this way the resistance is defined for every

pair of states).

Similarly, let ξ = (z1, . . . , zk) be an (m,m′)-path, i.e., a finite sequence of states in which

z1 = m and zk = m′. The resistance of the path ξ is the sum of the resistances of its

transitions.

Let E = {E0, . . . , Ek} be the set of recurrent classes of the unperturbed process and

consider the complete directed graph with vertex set E, which is denoted by Γ. We want to

define the resistance of each one of the edges in this graph. For this, let Ei and Ej be two

elements of E. The resistance of the edge (Ei, Ej) in Γ is the minimum resistance over all

the resistances of the (Ei, Ej)-paths. Note that while Ei and Ej are two recurrent classes,

(Ei, Ej)-paths are typically composed of any kind of states, not necessarily recurrent.

Let Ei be a recurrent class. A Ei-tree is a tree with vertex set E such that from every

vertex different from Ei, there is a unique directed path in the tree to Ei. The resistance

of the Ei-tree is the sum of the resistances of the edges that compose it. The stochastic

potential of the recurrent class Ei is the minimum resistance over all the Ei-trees. Young

(1993) shows that the set of stochastically stable states of the process consists of those

states with minimum stochastic potential. Thus, what is key is the identification of paths of

minimum resistance, and this is what the proofs of our sufficiency results in the next sections

will do.

3 Complete Information

In this section we present a result for complete information environments, based on a per-

turbed BRD process with uniform mistakes. Uniform mistakes means that each “mistake”

made by an agent, i.e., each revision of his strategy that goes against the better-response

direction, is equally likely (say, it has a small probability ε > 0).
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To get such a result on implementability in perturbed better-responses under uniform

mistakes, we use an additional assumption on the SCF, i.e., that it is (strongly Pareto)

efficient:5 We write the definition of efficiency as we will use it:

An SCF f is (strongly) Pareto efficient if for all θ and for all alternative outcomes

z 6= f(θ), there exists an individual i(θ, z) such that f(θ) �θi(θ,z) z.6

In addition to (1) and (2), we shall require Assumption (3) below. Before getting to it,

we go over some necessary material in the next paragraphs.

First, note that since states differ because at least one of the agents’ preference varies,

one has that for each pair of states θ and φ, there exists an agent j(θ, φ) and alternatives

x(θ, φ) and y(θ, φ) such that

x(θ, φ) �θj(θ,φ) y(θ, φ) and y(θ, φ) �φj(θ,φ) x(θ, φ). (1)

Denote by J(θ, φ) the set of agents j(θ, φ) for whom there exists a preference reversal between

a pair of alternatives across states θ and φ, as specified in (1).

Also, without loss of generality, note that for all θ, φ, one can choose alternative y(θ, φ)

so that for all i 6= j(θ, φ), yi(θ, φ) 6= 0. We shall do this in the sequel.

Here is our regularity assumption on the environments:

(3) For each pair of states θ and φ, there exists j(θ, φ) ∈ J(θ, φ) such that j(θ, φ) 6=
i(θ, x(θ, φ)), where x(θ, φ) is an alternative for which agent j(θ, φ) has a preference

reversal as in (1).

This assumption is used because the mechanism in theorem 1 will move the game from

some f(θ) to some other outcome x(θ, φ) as specified in condition (1). We need that the

identity of some agent who loses out in this move from f(θ) to x(θ, φ) (who exists by Pareto

efficiency) be different from the identity of the agent experimenting the preference reversal,

and that is what condition (3) requires. For example, a “replica” economy in which the

preferences in the base economy are not all identical would meet this assumption.

Now, we can prove the following result:

Theorem 1 Suppose the environments satisfy Assumptions (1), (2) and (3). Let n ≥ 5.

Any ε-secure and strongly Pareto efficient SCF f is implementable in stochastically stable

strategies of perturbed BRD, where the perturbation consists of uniform mistakes.

5As we shall remark after the proof of the result in this subsection, one can get rid of this by making a

different assumption on the environments.
6Thus, we are ruling out cases such as linear indifference curves with the same slope for all agents.
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Proof: Consider the following mechanism. Let agent i’s message set be Mi = Θ×Z. Let

a typical message sent by agent i be mi = (m1
i ,m

2
i ) and the corresponding message profile

be m = (m1,m2). The outcome function obeys the following rules:

(i) If for every i ∈ N , m1
i = θ, g(m) = f(θ).

(ii.a) If exactly (n − 1) messages mi are such that m1
i = θ and mi(θ,x(θ,φ)) = (φ, x(θ, φ)),

g(m) = (xi(θ,x(θ,φ))(θ, φ), xj(θ,φ)(θ, φ), 2ε, 2ε, . . . , 2ε).

(ii.b) If exactly (n− 1) messages mi are such that m1
i = θ, but the odd man out, say agent

k, does not satisfy the requirements of rule (ii.a), g(m) = (fk(θ) − β, f−k(θ)), where

fk(θ) ≥ fk(θ)− β ≥ (ε, . . . , ε).

(iii.a) If exactly (n − 2) messages mi are such that m1
i = θ, mi(θ,x(θ,φ)) = (φ, x(θ, φ)) and

mj(θ,φ) = (φ, y(θ, φ)), g(m) = (yi(θ,x(θ,φ))(θ, φ), yj(θ,φ)(θ, φ), ε, ε, . . . , ε).

(iii.b) If exactly (n−2) messages mi are such that m1
i = θ, but we are not under rule (iii.a),

for all k ∈ N , gk(m) = (ε, . . . , ε).

(iv) In all other cases, g(m) = 0.

(For rule (iii.a) to be well defined, the assumption n ≥ 5 is needed to determine the

outcome in profiles where two agents report the same state θ as part of their message and

two other agents report a different state φ, each pair of agents involving j(θ, φ) and j(φ, θ),

respectively.)

We begin by arguing in the next four steps that all recurrent classes of the unperturbed

better-response process must happen under either rule (i) or under rule (ii.a) where the

common announcement by n− 1 people is not the true preference profile.

Let θ be the true preference profile.

Step 1: No message profile in rule (iv) is part of a recurrent class. From any profile m in

(iv), one can construct a path as follows. For all players it is a better response to announce

(θ, f(θ)). This yields f(θ), from which one can never go back to the zero allocation under

better-response dynamics.

Step 2: No message profile in rule (ii.b) or (iii.b) is part of a recurrent class. Let φ be

the announcement of the n − 1 or n − 2 people announcing a common state. For players

announcing a state φ′ 6= φ it is a better response to announce (φ, f(φ)). This yields f(φ),

from which one can never go back to the allocation under (ii.b) or (iii.b) with better-response

dynamics.
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Step 3: No message profile in rule (iii.a) is part of a recurrent class. For the n − 2 agents

making a common announcement, it is a better-reply to announce a different common an-

nouncement, and hence impose rule (iii.b), which we have already argued can never be part

of a recurrent class.

Step 4: No message profile in rule (ii.a) is part of a recurrent class if the common announce-

ment is θ. Let the alternative announcement be φ. In rule (ii.a) the agent deviating from

the common announcement is agent i(θ, x(θ, φ)), who obtains xi(θ,x(θ,φ))(θ, φ), which by def-

inition of i(θ, z) is such that f(θ) �θi(θ,x(θ,φ)) xi(θ,x(θ,φ))(θ, φ) and so for this agent announcing

(θ, f(θ)) would be a best-response. From there, going back to rule (ii.a) would never happen

under better-reply dynamics.

Recall that θ is the true state. Next, we can classify the recurrent classes into three

categories:

Denote by E0 the recurrent class of BRD in which all n agents report the true state

as the first part of their announcement. Note that there are multiple states within this

truthful recurrent class, as agents can disagree on the allocation reported. And denote

by Ej, j = 1, . . . , k, a typical recurrent class consisting of a profile under rule (i), where

agents’ unanimously reported state is θj, which is not θ, the true state. Finally, classes

Ek+1, . . . , Ek+k′ comprise the possible recurrent states under rule (ii.a) where the common

announcement by n− 1 people is not the true preference profile.

For any two states m and m′, one can now define the resistance of the transition m→ m′

as the number of mistakes involved. We wish to show that the stochastically stable states

of perturbed BRD in the game under uniform mistakes are precisely the states in the class

E0. To show this, it will suffice to make the following observations:

[a] To get out of the class E0, we need some agent i(θ, x(θ, φ)) to impose one of the reversal

outcomes x(θ, φ) – one mistake, as by definition this individual is worse off. Next,

j(θ, φ) imposes y(θ, φ) – second mistake, in this case by equation (1). Finally, anyone

else changes and we go to rule (iv) where 0 is the outcome – third mistake. From 0, we

go for free to any of the other recurrent classes. There are other paths as well, going

first to (ii.b), and from there to (iii.b), and then to (iv), but all those also require three

mistakes.

[b] To get out of any of the recurrent classes with untruthful profiles Ej, j = 1, . . . , k, (say

m1 = φ is one such profile when the true state is θ), one can take the following path:

an agent i(φ, x(φ, θ)) can impose x(φ, θ). At this point, either f(φ) �θi(φ,x(φ,θ)) x(φ, θ),
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in which case this step requires a first mistake, or x(φ, θ) �θi(φ,x(φ,θ)) f(φ), in which case

this step has zero resistance. Next, agent j(φ, θ) changes the outcome to y(φ, θ) for

free. Finally, someone else changes the outcome to 0 under rule (iv), which constitutes

at most a second mistake. From there, we go for free to any of the other recurrent

classes.

[c] To get out of any of the recurrent classes Ek+1, . . . , Ek+k′ , where the common profile is

φ 6= θ, announced by n − 1 agents, and the alternative announcement is φ′, let any

agent who announces φ deviate to announcing φ′′. This is a mistake and leads to rule

(iv). From there, we can go for free to E0.

Therefore, by [b] and [c] one can construct an E0-tree in which the resistance of each of

the edges (Ej, E0), j = 1, . . . , k + k′ is at most 2. The resistance of such a tree is at most

2 (k + k′). On the other hand, any Ej-tree (j = 1, . . . , k+ k′) must include an edge (E0, Em)

of resistance 3 (by [a]). This fact, together with [b] and [c] for all the other edges in the tree,

implies that the resistance of the Ej-tree is no less than 2 (k + k′) + 1. We conclude that E0

is the class of minimum stochastic potential, and thus, it contains all stochastically stable

states.�

Remark: If one assumes that the preference reversals specified in equation (1) occur “near

enough the zero bundle,” one can show, using a similar proof, that for n ≥ 5 any ε-secure SCF

is implementable in stochastically stable strategies of a perturbed BRD based on uniform

mistakes. In this sense, one can clearly interpret Theorem 1 as a very permissive result.

Remark: It appears that, to obtain meaningful implementability results using uniform

mistakes, one needs to add at least a new rule to the canonical mechanism used for the

result based on “more serious mistakes are less likely” of our working paper (also used in

Theorem 2 of CS). Note how the proof has relied heavily on the use of the preference reversal

specified in equation (1). On the other hand, the economic environment is not essential. A

mechanism very similar to the one we present but using modulo games and allowing for

some punishments, based on the NWA condition of CS, would also work in non-economic

environments.

4 Incomplete Information

This section tackles the extension of our results to incomplete information environments.
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Each agent knows his type θi ∈ Θi, a finite set of possible types. Let Θ =
∏

i∈N Θi be

the set of possible states of the world, let Θ−i =
∏

j 6=i Θj of type profiles θ−i of agents other

than i. We shall sometimes write a state θ = (θi, θ−i). We assume that all states in Θ have

positive ex-ante probability.7

Let qi(θ−i|θi) be type θi’s interim probability distribution over the type profiles θ−i of the

other agents. An SCF (or state-contingent allocation) is a mapping f : Θ 7→ Z that assigns

to each state of the world a feasible allocation.

Let A denote the set of SCFs. We shall assume that uncertainty concerning the states of

the world does not affect the economy’s endowments, but only preferences and beliefs.

We shall write type θi’s interim expected utility over an SCF f as follows:

Ui(f |θi) ≡
∑

θ−i∈Θ−i

qi(θ−i|θi)ui(f(θi, θ−i), (θi, θ−i)).

Note how the Bernoulli (ex-post) utility function ui may change with the state. We shall

use the obvious versions of Assumptions (1) and (2) applied to each ex-post utility function

in each state.

A mechanism G = ((Mi)i∈N , g), played simultaneously by myopic agents, consists of

agent i’s set Mi of messages (for each i ∈ N , agent i’s message is a mapping from Θi to Mi),

and the outcome function g : M 7→ Z. The direct mechanism for the SCF f is a mechanism

in which for all i, Mi = Θi and where g = f . A Bayesian equilibrium is a message profile in

which each type chooses an interim best-response to the other agents’ messages, and a strict

Bayesian equilibrium is a Bayesian equilibrium in which every type’s interim best-response

is a strict best-response. To prevent any kind of learning about the state, we shall assume

that, after an outcome is observed, agents forget it (or, closer to the evolutionary tradition,

agents are replaced by other agents who share the same preferences and prior beliefs as their

predecessors, but are not aware of their experience).8

Let agent i of type θi be allowed to revise his message in period t. He does so using the

interim better-response logic, i.e., he switches with positive probability to any message that

improves (weakly) his interim expected utility, given his interim beliefs qi(θ−i|θi). That is,

letting mt be the message profile at the beginning of period t, type θi switches from mt
i(θi)

7We make this assumption for simplicity in the presentation. With some minor modifications in the

arguments, one can prove similar results if Θ∗ 6= Θ is the set of states with positive probability, according

to every agent’s prior belief.
8There are a host of alternative assumptions one could make, for example, that each agent receives his

type in each period as a draw from the i.i.d. underlying distribution; see Dekel, Fudenberg and Levine (2004)

for an appraisal of such different modeling choices.
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to any m′i such that:∑
θ−i∈Θ−i

qi(θ−i|θi)ui(g(m′i,m
t
−i(θ−i)), (θi, θ−i)) ≥

∑
θ−i∈Θ−i

qi(θ−i|θi)ui(mt(θ), (θi, θ−i)).

We adapt now the definitions of implementability to environments with incomplete in-

formation (the definition of implementability in recurrent strategies is borrowed from CS):

An SCF f is implementable in recurrent strategies (of interim BRD) if there exists a

mechanism G such that the interim BRD process applied to its induced game has f as its

unique outcome of the recurrent classes of the process.

An SCF f is implementable in stochastically stable strategies (of perturbed interim BRD)

if there exists a mechanism G such that a perturbation of the interim BRD process applied

to its induced game has f as the unique outcome supported by stochastically stable strategy

profiles.

4.0.1 Necessity

As for the assumptions on SCFs, we still assume that it is ε-secure in each state, although

this will not be a necessary condition. In contrast, we shall introduce two more properties,

which will be necessary for implementability in recurrent strategies. The next one is the

strict version of incentive compatibility.

An SCF f is strictly incentive compatible if truth-telling is a strict Bayesian equilibrium

of its direct mechanism, i.e., if for all i and for all θi,∑
θ−i∈Θ−i

qi(θ−i|θi)ui(f(θ), (θi, θ−i)) >
∑

θ−i∈Θ−i

qi(θ−i|θi)ui(f(θ′i, θ−i), (θi, θ−i))

for every θ′i 6= θi.

An SCF f is incentive compatible if the inequalities in the preceding definition are allowed

to be weak.

As it turns out, incentive compatibility is an important necessary condition for any kind

of implementability in our sense.

Theorem 2 If f is implementable in stochastically stable strategies of an arbitrary pertur-

bation of an unperturbed interim BRD process, f is incentive compatible. Furthermore, if

at least one of the recurrent classes selected by the perturbation of the interim BRD is a

singleton, f is strictly incentive compatible.
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Proof: Suppose that f is implementable in stochastically stable strategies of an arbitrary

perturbation of BRD. This means that, for this perturbed process, there is a unique outcome

supported by at least one of the recurrent classes of the unperturbed process, and this

outcome is f . Since f is the outcome of such a recurrent set of BRD, it must be incentive

compatible.

Furthermore, if one of the recurrent classes selected by the perturbation is a singleton, any

deviation from the message profile that is an absorbing state of the unperturbed dynamics

must worsen each type’s interim expected utility, and thus, f must be strictly incentive

compatible.�

4.1 Sufficiency

Consider a strategy in a direct mechanism for agent i, i.e., a mapping αi = (αi(θi))θi∈Θi
:

Θi 7→ Θi. A deception α = (αi)i∈N is a collection of such mappings where at least one differs

from the identity mapping.

Given an SCF f and a deception α, let [f ◦ α] denote the following SCF: [f ◦ α](θ) =

f(α(θ)) for every θ ∈ Θ.

Finally, for a type θ′i ∈ Θi, and an arbitrary SCF y, let yθ′i(θ) = y(θ′i, θ−i)) for all θ ∈ Θ.

We shall make the following additional assumptions on environments:

(4) For every deception α, there exists an agent i ∈ N , a type θi ∈ Θi, a strictly incentive

compatible SCF x, and another SCF y such that

Ui(x | θi) > Ui(yθ′i | θi)∀θ
′
i ∈ Θi and Ui(x ◦ α | θi) ≤ Ui(y ◦ α | θi). (2)

(5) The bundles in the SCFs x and y used in (2) are componentwise no greater than ε.

In words, Assumption (4) says that the environment admits preference reversals to over-

come deceptions. However, these preference reversals need not happen around f , the SCF

of interest, but around some strictly incentive compatible SCF x; see Serrano and Vohra

(2005) for an appraisal of this assumption.

For each deception α, we shall choose one test-pair x, y and one test-agent i, satisfying

the conditions in (2). Denote the set of all such x by D. Finally, with very little loss of

generality, choose the bundles in the SCFs y consisting of strictly positive amounts of each

commodity. Then, define the SCF [y] as the one that assigns in each state the componentwise

minimum bundle for each agent i and each state θ: [y]i(θ) ≤ yi(θ) for all y.
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On the other hand, Assumption (5) says that such reversals happen “near enough the

zero bundle.”9 Then, one can make use of the insight in the last remark of the previous

section to show our next result:

Theorem 3 Suppose that the environments satisfy Assumptions (1), (2), (4) and (5). Let

n ≥ 5. Let f be ε-secure in every state and strictly incentive compatible. Then, f is

implementable in stochastically stable strategies of perturbed interim BRD under uniform

mistakes.

Proof: The proof follows steps similar to that of Theorem 1, but applied to the following

mechanism. Let agent i’s message set be Mi = Θi × A. Denote a typical message sent by

agent i by mi = (m1
i ,m

2
i ) and the corresponding message profile by m = (m1,m2). The

outcome function obeys the following rules:

(i) If for every i ∈ N , m2
i = f , g(m) = f(m1).

(ii.a) If exactly (n − 1) messages mj are such that m2
j = f and m2

i = x for some x ∈ D,

g(m) = x(m1).

(ii.b) If exactly (n − 1) messages mj are such that m2
j = f and m2

i = x for some x /∈ D,

g(m) = (fi(m
1)− β, f−i(m1)), where fi(·) ≥ fi(·)− β ≥ (ε, . . . , ε).

(iii.a) If exactly (n − 2) messages mk are such that m2
k = f , m2

i = x for some x ∈ D and

m2
j = y where j and y are the ones associated with x as in (***), g(m) = y(m1).

(iii.b) If exactly (n − 2) messages mk are such that m2
k = f , but the other conditions of

rule (iii.a) are not met, g(m) = [y](m1).

(iv) In all other cases, g(m) = 0.

We sketch the steps of the proof as follows. First, one can show that all recurrent classes of

interim BRD are under rule (i). For example, to see how rule (iv) is never part of a recurrent

class, use a simultaneous switch of all types to m2
i = f , and so on; similar arguments apply

to rules (ii) and (iii). Within rule (i), strict incentive compatibility allows one to support

9In fact, if the environment allowed the use of lotteries, and making use of expected utility, one could

combine the SCFs x and y in a mixture with the zero bundle, where the latter is imposed with arbitrarily

high probability. This argument would allow one to take the SCFs x and y arbitrarily “near the zero bundle”

without assuming it explicitly, as we do.
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truth-telling as one of these (singleton in this case) recurrent classes, but there may well be

others, in which agents are using a deception α.

To finish the sketch of proof, here is a heuristic argument. One can describe the transition

paths among the different recurrent states. To get out of the absorbing state in which agents

are telling the truth in their first part of the announcement, one can go through rule (ii.a),

which requires one mistake because any x ∈ D is near the origin (note that any agent can

be used for this mistake, by strictly increasing preferences in each state). Next, the test-

agent corresponding to that x will implement rule (iii.a), where we require a second mistake.

Finally, someone else makes a mistake and we go to rule (iv). A similar path can be created

for each state to get to the profile of zero bundles. There are other paths one could follow:

for example, through rules (ii.b) and (iii.b), but the point is that each time an agent switches

to change the outcome in the direction of the zero profile, a mistake is required.

On the other hand, if one starts at an absorbing state in which a deception is being used,

one gets out through any agent other than the test-agent for that deception and imposes rule

(ii.a), which requires one mistake. The next step, taken by the test-agent for that deception,

is free because of equation 2. From rule (iii.a), someone else changes to rule (iv), and so on.

In this path, we have “saved” one mistake. Of course, from the zero profile, we go for free

to any of the other absorbing states.

These arguments allow the construction of the corresponding spanning trees for each

absorbing state. The result is that the truthful absorbing state is the only one of minimum

stochastic potential, i.e., the only one that is stochastically stable.�

5 Conclusion

The results presented here complement those in CS. Restricting attention to economic en-

vironments, we have studied implementation under perturbed better-response dynamics. In

the working paper version of this study, we show that, for a variant of “more serious mistakes

are less likely,” any ε-secure SCF is implementable when there are at least three agents. For

uniform mistakes, we have shown here that any ε-secure and strongly efficient SCF is imple-

mentable when there are at least five agents. Extensions of results to incomplete information

environments have also been obtained, including the emergence of incentive compatibility as

a necessary condition for any kind of robust implementation in our sense.
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