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1 Introduction 

Present practice in applied time series work, mostly at economic policy or data 
producing agencies, relies heavily on using moving average filters to estimate 
unobserved components (or signals) in time series. Within the "ad-hoc" filter­
design approach, well known examples are the X11 filter for seasonal adjust­
ment, and the Hodrick-Prescott filter (HP) filter to estimate business cycles; 
see Shiskin et al (1967), and Hodrick and Prescott (1980). Within the "model­
based" approach, whereby the filters are derived from statistical models, well 
known examples are the filters provided by programs STAMP and SEATS; 
see Koopman et al. (1996), and Gomez and Maravall (1996). (The program 
X12ARIMA can be seen as a move from ad-hoc filtering towards a partially 
model-based approach; see Findley et al., 1998). The purpose of the present 
paper is to provide an informal introduction to the time series analysis tools 
and concepts required by the user or analyst to understand the basic method­
ology behind the application of filters. The paper is aimed at economists, 
statisticians, and analysts in general, that do applied work in the field, but 
have not had an advanced course in applied time series analysis. Although the 
presentation is informal, we hope that careful reading of the paper will provide 
them with an important tool to understand and improve their work, in an au­
tonomous manner. Emphasis is put on the model-based approach, although 
much of the material applies to the ad-hoc filtering case (in fact, most ad-hoc 
filters can be seen -at least to a close approximation- as particular cases of the 
model-based approach.) The basic structure consists of modelling the series as 
a linear stochastic process, and estimating the component by means of "signal 
extraction", i.e., by optimal estimation of well-defined components. 

A previous word of caution should be said. The standard filtering pro ce dure 
to estimate business cycles may require sorne prior corrections to the series, 
given that otherwise the results can be strongly distorted. An important ex­
ample is outlier correction, as well as the correction for special effects that 
can have many different causes (trading day, easter, or holiday effect, legal 
changes, modifications in the statistical measurement procedure, etc.). This 
"preadjustement" of the series shall be briefiy desctibed in Section 3.3, where 
references for its methodology and its application in practice will be provided, 
that also cover the case in which observations are missing. For the rest of the 
book, we shall assume that the series either has already been preadjusted, or 
that no preadjustment is needed. 

Further, although the discussion and the approach are also valid for other 
frequencies of observation, in order to simplify, we shall concentrate on quar­
terly series. 
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2 Brief review of applied time series analysis 

2.1 Sorne basic concepts 

The very basic intuition behind the concept of cyclical or seasonal variation 
leads to the idea of decomposing a series into "unobserved components" , mostly 
defined by the frequency of the associated variation. If Xt denotes the observed 
series, the simplest formulation could be 

Xt = ¿Xjt + Ut (2.1) 
j 

where the variables Xjt denote the unobserved components, and Ut a residual 
effect (often referred to as the "irregular component"). In the early days, the 
components were often specified to follow deterministic models that could be 
estimated by simple regression. We shall follow the convention: a Deterministic 
Model denotes a model that yields forecasts with zero error when the model 
parameters are known. Stochastic Models will provide forecasts with non­
zero random errors even when the parameters are known. For example, a 
deterministic trend component (pd could be specified as the linear trend 

Pt = a + bt, (2.2) 

and the seasonal component (sd could be modelled with dummy variables, as 
In 

St = ¿cjdjt , (2.3) 
j 

where d jt = 1 when t corresponds to thejth period ofthe year, and d jt = O oth­
erwise. An equivalent formulation can be expressed in terms of deterministic 
sine-cosine functions. 

Gradual realization that seasonality evolves in time (an obvious example 
is the weather, one of the basic causes of seasonality) lead to changes in the 
estimation procedure. It was found that linear filters could reproduce the 
moving features of a trend or a seasonal component. A Linear Filter will 
simply denote a linear combination of the series Xl, as in 

Yt = C-k¡Xt-k¡ + ... + C-IXt-l + COXt + CIXt+l + ... + Ck2Xt+k2' (2.4) 

and, in so far as Yt is then sorne sort of moving average of successive stretches of 
Xt, we shall also use the expression Moving Average (MA) filter. The weights 
Cj could be found in such a way as to capture the relevant variation associated 
with the particular component of interest. Thus a filter for the trend would 
capture the variation associated with the long-term movement of the series, 
and a filter for a seasonal component would capture variation of a seasonal 
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nature. A filter designed in this way, with an "a priori" choice of the weights, 
is an "ad-hoc" fixed filter, in the sense that it is independent of the particular 
series to which it is being applied. Both, the HP and the X11 filters can be 
seen as "ad-hoc" fixed MA filters (although, strictly speaking, the coefficients 
as we shalI see later, wilI not be constant.) 

Over time, however, application of "ad-hoc" filtering has evidenced sorne 
serious limitations. An important one is the fact that, due to its fixed char­
acter, spurious results can be obtained, and for sorne series the component 
may be overestimated, while for other series, it may be underestimated. To 
overcome this limitation, and in the context of seasonal adjustment, an alter­
native approach was suggested (around 1980) whereby the filter adapted to the 
particular structure of the series, as captured by its ARIMA model. The ap­
proach, known as the ARIMA-model-based (AMB) approach, consists of two 
steps. First, an ARIMA model is obtained for the observed series. Second, 
signal extraction techniques are used to estimate the components with filters 
that are, in sorne welI-defined way, optimal. 

2.2 Stochastic processes and stationarity 

The folIowing summary is an informal review, aimed at providing sorne basic 
tools for the posterior analysis, as welI as sorne intuition for their usefulness. 
More complete treatments of time series analysis are provided in many text­
books; sorne helpful references are Box and Jenkins (1970), BrockwelI and 
Davis (1987), Granger and Newbold (1986), Harvey (1993), and MilIs (1990). 

The starting point is the concept of a Stochastic Process. For our pur­
poses, a stochastic process is a real-valued random variable Zt, that folIows a 
distribution !t(zd, where t denotes an integer that indexes the periodo The 
T -dimensional variable (Ztll Zt2' ... , ZtT) wilI have a joint distri bution that de­
pends on (t 1, t 2 , ... , tT). A Time Series [Zt¡, Zt2' ... , ZtT 1 wilI denote a particular 
realization of the stochastic process. Thus, for each distribution !t, there is 
only one observation available. Not much can be learned from this, and more 
structure and more assumptions need to be added. To simplify notation, we 
shalI consider the joint distribution of (Zl, Z2, . .. ,z¡), for which a time series is 
available when t < T. 

From an applied perspective, the two most important added assumptions 
are 

Assumption A: The process is stationary; 

Assumption B: The joint distribution of (Zl' Z2, •.. , Zt) is a multivariate nor­
mal distribution. 
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Assumption A implies the following basic condition. For any value of t, 

(2.5) 

where k is a integer; that is, the joint distribution remains unchanged if a1l 
time periods are moved a constant number of periods. In particular, letting 
t = 1, for the marginal distribution it has to be that 

ft(Zt) = f(Zt) 

for every t, and hence the marginal distribution remains constant. This implies 

(2.6) 

where E and V denote the expectation and the variance operators, and ¡.tz and 
l~ are constants that do not depend on t. 

In practice, thus, stationarity implies a constant mean level and bounded 
deviations from it. It is a very strong requirement and few actual economic 
series will satisfy it. Its usefulness comes from the fact that relatively sim­
ple transformations of the nonstationary series will render it stationary. For 
quarterly economic series, it is usually the case that constant variance can be 
achieved through the log/level transformation combined with proper outlier 
correction, and constant mean can be achieved by differencing. 

The log transformation is "gros so modo" appropriate when the amplitude 
of the series oscillations increases with the level of the series. As for outliers, 
several possible types should be considered, the most popular ones being the 
additive outlier (i.e., a single spike), the level shift (i.e., a step variable), and 
the transitory change (i.e., an effect that gradually disappears). Formal test­
ing for the log/level transformation and for outliers are available, as well as 
easy-to-apply automatic procedures for doing it (see, for example, Gómez and 
Maravall, 2000a). In Section 3.3 we shall come back to this issue; we center 
our attention now on achieving stationarity in mean. 

2.3 Differencing 

Denote by B the backward operator, such that 

Bj Zt = Zt-j (j = O, 1, 2, ... ), 

and let Xt denote a quarterly observed series. We shall use the operators: 

• Regular difference: \7 = 1 - B. 

• Seasonal difference: \74 = 1 - B 4
• 

• Annual aggregation: S = 1 + B + B 2 + B 3
• 
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Thus \7Xt = Xt - Xt-l, \74 Xt = Xt - Xt-4, and SXt = Xt + Xt-l + Xt-2 + Xt-3· 

It is immediately seen that the 3 operators satisfy the identity 

\74 =\7S 

If Xt is a deterministic linear trend, as in Xt = a + bt, then 

\7Xt = b; 
\72Xt = O; 

(2.7) 

(2.8) 

(2.9) 

where \72Xt = \7(\7 Xt). In general, it can easily be seen that \7d will reduce 
a polynomial of degree d to a constant. Obviously, \7 4Xt will also cancel a 
constant (or reduce the linear trend to a constant); but it will also cancel 
other deterministic periodic functions, such as for example, one that repeats 
itself every 4 quarters. To find the set of functions that are cancelled with 
the transformations \7 4Xt, we have to find the solution of the homogenous 
difference equation 

\74 Xt = (1 - B4
)xt = Xt - Xt-4 = O, (2.10) 

with characteristic equation r 4 - 1 = O. The solution is given by 

r = VI, 
that is, the four roots of the unit circle displayed in Figure 2.1. The four roots 
are 

(2.11) 

The first two roots are real and the last two are complex conjugates, with 
modulus 1 and, as seen in the figure, frequency w = 7r /2 (frequencies will 
always be expressed in radians). Complex conjugate roots generate periodic 
movements of the type 

rt = A t cos(wt + B) (2.12) 

where A denotes the amplitude, B denotes the phase (the angle at t=O) and 
w the frequency (the number of full circles that are completed in one unit of 
time.) The period of function (2.12), to be denoted T, is the number of units 
of time it takes for a full circle to be completed, and is related to the frequency 
w by the expression 

27r 
T --- . (2.13) 

W 
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Figure 2.2a illustrates a periodic movement of the type (2.12), with A=l. 
B=O, and w = rr/4. From (2.11). the general solution of \74Xt = O can be 
expressed as (see for example, Goldberg, 1967) 

Xt = Ca + el cos (~t + dI) + e2( _l)t, 

where eo, el, e2 and dI are constants to be determined from the starting condi­
tions. Realizing that eosrr = -1, the previous expression can also be written 
as 

Xt = eo + tej cos (j~t + dj), (2.14) 
j=1 2 

with d2 = O. Considering (2.13), the first term in the sum of (2.14) will be 
associated with a period of T = 4 quarters and will represent thus a seasonal 
component with a once-a-year frequencyj the second term has a period of T = 2 
quarters, and hence will represent a seasonal component with a twice-a-year 
frequency. The two components are displayed in Figure 2.2b and c. Noticing 
that the characteristic equation can be rewritten as (B-l)4 - 1 = O, (2.11) 

8 



implies the factorization 

\74 = (1- B)(1 + B)(1 + B2). 

The factor (1-B) is associated with the constant and the zero frequency, the 
factor (1+B) with the twice-a-year seasonality with frequency w = 1r, and the 
factor (1+B2) with the once-a-year seasonality with frequency w = 1r/2. The 
product of these last two factors yields the annual aggregation operator S, in 
agreement with expression (2.7). Hence the transformation SXt will remove 
seasonal nonstationarity in Xt. 

For the most-often-found case in which stationarity is achieved through the 
differencing \7\74, the factorization 

\7\74 = \72 S 

directly shows that the solution to 

\7\7 4Xt = O 

will be of the type: 

Xt = a + bt + tCj [cos(j?!.t) + dj] , 
J=l 2 

(2.15) 

with d2 = O. Thus the differencing will remove the same cosine (seasonal) 
functions as before, plus the local linear trend (a+bt). For the case \72\74, the 
factorization \73 S shows that the cancelled trend will now be a second order 
polynomial in t, the rest remaining unchanged. For quarterIy series, higher 
order differencing is never encountered in practice. 

A final and important remark: 

• Let D denote, in general, the complete differencing applied to the series 
Xt so as to achieve stationarity. When specifying the ARIMA model for 
Xt, we shall not be stating that DXt O (as, for example, in (2.9), ) but 
that 

DXt = Zt, 

where Zt is a zero-mean, stationary stochastic process with relatively 
small variance. Thus every period the solution of DXt = O will be per­
turbed by the stochastic input Zt (see Box and Jenkins, 1970, Appendix 
AA.1). In terms of expression (2.15), what this perturba.tion implies is 
that the a,b,c and d coefficients will not be constant but will instead 
depend on time. This gradual evolution of the coefficients provides the 
model with an adaptive behavior that will be associated with the "mov­
ing"features of the trend and seasonal components. 
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Figure 2.2 
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2.4 Linear stationary process, Wold representation, and 
autocorrelation function 

Following the previous notation, if Xt denotes the observed variable and Zt = 

DXt its stationary transformation, under assumptions A and B, the variable 
(ZI, Z2, ... , ZT) will have a proper multivariate normal distribution. One impor­
tant property of this distribution is that the expectation of sorne (unobserved) 
variable linearly related to Zt, conditional on (ZI' Z2, ... , ZT), will be a linear 
function of ZI, Z2, ... ,ZT. Thus conditional expectations will directly provide 
linear filters. An additional important property is that, because the first two 
moments fully characterize the distribution, stationarity in mean and variance 
will imply stationarity of the process. In particular, stationarity will be im­
plied by the constant mean and variance condition (2.6), plus the condition 
that 

COV(Zt, Zt-k) = Ik, 

for k = 0, ±1, ±2, ... Hence the covariance between Zt and Zt-k should depend 
on their relative distance k, not on the value of t. Therefore, 

(ZI, Z2, ... ,ZT) rv N(f-l, ~), 

where f-l is a vector of constant means, and ~ is the variance-covariance matrix 

Yz 11 12 IT-I 
V, -íl -íT-2 

11 
Yz 

a positive definite symmetric matrix. Let F denote the forward operator, 
F = B- 1

, such that 

FJ Zt = Zt+j, (j = 0,1,2, ... ), 

a more parsimonious representation of the 2nd-order moments of the stationary 
process Zt is given by the Autocovariance Generating Function (AGF) 

00 

I(B, F) = 10 + ¿ Ij(Bj + Fj). (2.16) 
j:::1 

To transform this function into a scale-free function, we divide by the variance 
10, and obtain the Autocorrelation Generating Function (ACF), 

00 

p(B, F) = Po + ¿pj(Bj + Fj). (2.17) 
j:::1 

where pj = 'jl,o. If the following conditions on the AGF: 

11 
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1. Po l' , 

2. Pj P-jj 

3. Ipjl < 1 for j o· , 

4. pj -+ O as j -+ 00; 

5. Ipkl < 00, 

are satisfied, then a zero-mean, finite variance, normally distributed process 
is stationary. Further, under the normality assumption, a complete realization 
of the stochastic process will be fully characterized by Ilz, Vz and p( B, F). 

\Vhen Pj O for all j i= 0, the process will be denoted a White Noise 
process. Therefore, a white noise process is a sequen ce of normally identically 
independently distributed random variables. 

The AGF (or ACF) is the basic tool in the so-called "Time Domain Analysis" 
of a time series. The first statistics that we shall compute for a time series 
[Zl' ... ,ZT] will be estimates of the autocovariances and autocorrelations using 
the standard sample estimates 

T 

'Yk = T- 1 L (Zt - Z)(Zt-k 

t=k+l 

N ext, a look at the sample A CF (SA CF) will give an idea of the lag dependence 
in the series: large autocorrelation for low lags will point towards large inertia; 
large autocorrelation for seasonal lags will, of course, indicate the presence of 
seasonality. One word of caution should be nevertheless made: the dependence 
of the autocorrelation estimators on the same time series can induce impor­
tant spurious correlation between them. These correlations can have serious 
distorting effects on the visual aspect of the SACF, which may fail to damp 
out according to expectations (see Box and Jenkins, 1970, section 2.1). Figure 
2.3a exhibits the ACF of a quarterly stationary process; figure 2.3b displays 
the SACF obtained with a sample of 100 observations. As a consequence, care 
should be taken not to "over-read" SACFs, ignoring large-Iag autocorrelations, 
and focussing only on its most salient features. 

To start the modelling procedure, a general result on linear time series pro­
ces ses will provide us with an analytical representation of the process that will 
prove very useful. This is the so-called Wold (or Fundamental) representation. 
\Ve present it next. 
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Figure 2.3 
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Let Zt denote a linear stationary stochastic process with no deterministic 
component, then Zt can be expressed as the one-sided moving average 

Zt at + 'l/;l at-l + 'l/;2 a t-2 + ... = 
00 

j=O 
00 

w(B) = ¿ 'l/;jBj, (2.18) 
j=O 

where at is a white noise process with zero mean and constant variance Va, 
and W(B) is such that 

1. 'l/;j -t O as j -t 00; 

the last condition reflecting a sufficient condition for convergen ce of the 
polynomial w(B). Given the 'l/;j-coefficients, at represents the one-period ahead 
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forecast error of Zt, that is 

at = Zt - Ztlt-l, 

where Ztlt-l is the forecast of Zt made at period t-l. Since at represents what 
is new in Zt, that is, what is not contained in its past [Zt-l, Zt-2, Zt-3,"'], it 
will be referred to as the Innovation of the process. The representation of Zt 

in terms of its innovations, given by (2.18), is unique, and is usually referred 
to as the Wold representation. 

A useful result is the following: If ,(B, F) represents the AGF of the process 
Zt, then 

,(B, F) = W(B)W(F)Va • (2.19) 

In particular, for the variance, 

Vz = (1 + ~i + ~~ + ... ) Va. (2.20) 

2.5 The spectrum 

The spectrum is the basic tool in the so-called "Frequency Domain Approach" 
to time series analysis. It represents an alternative way to look and interpret 
the information contained in the second-order moments of the series. The 
frequency approach is particularly convenient for analyzing unobserved com­
ponents, such as trends, cycles, or seasonality. Our aim is not to present a 
complete and rigorous description, but to provide sorne intuition and basic 
understanding, that will permit us to use it properly for our purposes. (Two 
good references for a general presentation are Jenkins and Watts, 1968, and 
Grenander and Rosenblatt, 1957.) 

Consider, first, a time series (i.e., a partial realization of a stochastic process) 
given by Zl, Z2, ... , ZT. To simplify the discussion, assume the process has zero 
mean and that T is even, so that we can write T=2q. In the same way that, 
as is well known, the T values of Zt can be exactly duplicated (" explained") by 
a polynomial of order (T-1), they can also be exactly reproduced as the sum 
of T /2 cosine functions of the type (2.12); this result provides in fact the basis 
of Fourier analysis. 

Figure 2.4a shows, for example, the quarterly time series of 10 observations 
generated by the five cosine functions of figure 2.4b. To construct this set of 
functions, we start by defining the Fundamental Frequency w = 21T' /T (i.e.) 
the frequency of one full circle completed in T periods) and its multiples (or 
Harmonics) 

Wj = (21T' /T)j, j = 1,2, ... ,q. 

14 



Then, express (2.12) as 

and hence, 
q 

Zt = ¿rjt. 
j=} 

Figure 2.4 
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a) Generated time series 
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-1 
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b) Fourier series 
8 9 10 

It is straightforward to check that aj and bj are related to the amplitude Aj 
by 

A2 2 b2 
. j = aj + j' 

From (2.21) and (2.22), by plugging in the values of Zt, Wj, and t, a linear 
system of T equations is obtained in the unknowns aj 's and bj 's, j = 1,2, ... , q; 
a total of T unknowns. Therefore, for each frequency Wj, we obtain a square 
amplitude Al The plot of A; versus Wj, j = 1, ... , q, is the Periodogram of 
the series. 
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As a consequence, we obtain a set of periodic functions with different fre­
quencies and amplitudes. We can group the functions in intervals of frequency 
by summing the squared amplitudes of the functions that fall in the same 
interval. In this way we obtain an histogram of frequencies that shows the 
contribution of each interval of frequency to the series variationj an example 
is shown in Figure 2.5a. In the same way that a density function is the model 
counterpart of the usual histogram, the spectrum will be the model counterpart 
of the frequency histogram (properly standardized). 

Figure 2.5 
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a) Histogram of frequencies 
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b) Power spectrum 

vVe can now let the ínterval 6.Wj go to zero, and the frequency histogram 
"viII become a continuous functíon, which is denoted the Sample Spectrum. 
The area over the differential dw represents the contribution of the frequencies 
in dw to the variation of the time series. An important result links the sample 
spectrum with the SACF (see Box and Jenkins, 1970, Appendix A.2.1). If 
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H (w) denotes the sample spectrum, then it is proportional to 

( 

T-l ) 
H(w) oc ..yo + 2 ~..yj coswt , (2.23) 

where ..yj denotes the lag-j autocovariance estimator. 
The model equivalent of (2.23) provides precisely the definition of power 

spectrum. Consider the AGF of the stationary process Zt, given by 
<Xl 

,(B, P) = 'o + L ,j(Bj + pi), (2.24) 
i=1 

where B is a complex number of unit modulus, which can be expressed as 
. Replacing B and F by their complex representation, (2.24) becomes the 

function 
<Xl 

g(w) = 'o + L ,j( e-
iwj + é Wj

), 
j=1 

0[, using the identity 

e- iwj + eiwj = 2cos(jw), 

and dividing by 21T, one obtains 

g¡(w) = -} ['o + 2 f ,j COS(jW)]. 
1T j=1 

(2.25) 

The move from (2.24) to (2.25) is the so-caBed Fourier cosine transform of the 
AGF ,(B, P), and is denoted the Power Spectrum. Replacing the AGF by 
the ACF (i.e., dividing by the variance 'o), we obtain the Spectral Density 
Function 

gj(w) = 2~ [1 + 2 ~Pj COS(jW)]. (2.26) 

It is easily seen that gl(W) -or g~(w)- are periodic functions, and hence the 
range offrequencies can be restricted to (-1T,1T), or (O, 21T). Moreover, given 
that the cosine function is symmetric around zero, we only need to consider the 
range (O, 1T). It is worth mentioning that the sample spectrum (2.23), dívided 
by 271', is also the Fourier transform of the sample autocovariance functíon. 

From (2.25), knowing the AGF of a process, the power spectrum is trivially 
obtained. Alternatively, knowledge of the power spectrum permits us to derive 
the AGF by means of the inverse Fourier transform, given by 

,k = f~ g(w) cos(wk)dw. 
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Thus, for k=O, 

(2.27) 

which shows that the integral of the power spectrum is the variance of the 
process. Therefore, the area under the spectrum for the interval dw is the 
contribution to the variance of the series that corresponds to the range of 
frequencies dw (as in Figure 2.5b). Roughly, the power spectrum can be seen 
as a decomposition of the variance by frequency. 

For the rest of the monograph, in order to simplify the notation, power spec­
tra will be expressed in units of 27l', and, because of the symmetry condition, 
only the range w E [0,7l'] will be considered. We shall refer to this function 
simply as the Spectrum. 

As an example, consider a process Zt, the output of the 2nd-order homogenous 
difference-equation (deterministic) model 

Zt + .81zt_2 = O (2.28) 

The characteristic equation, r 2 + .81 = O yields the pair of complex conjugate 
numbers r = ±.9i, situated in the imaginary axis, they will be associated thus 
with the frequency w = 7l' /2 (see Figure 2.1). The process follows therefore the 
deterministic function 

Zt = .9 cos (~t + ,B) , (2.29) 

where we can set ,B = -7l' /2. The function (2.29) does not depend on w and the 
movements of Zt are all associated with the single frequency w = 7l' /2. This 
explains the isolated spike for that frequency in Figure 2.6a. To transform 
the previous model into a stochastic process, we perturb every period the 
equilibrium (2.28) with a white noise (0,1) variable at, so that it is replaced 
by the stochastic model 

Zt + .81zt_2 = at, or (1 + .81 B2)Zt = ato (2.30) 

From (2.30), the Wold representation (2.18) is immediately obtained as 

with 

at 
Z ----­
t-1+.81B2' 

IJ!(B) = 1/(1 + .81B2
). 

Using (2.19), the AGF of Zt can be obtained through 

,(B, F) = 
(1 + .81B2)(1 + .81F2) 
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1.656 + .81(B2 + F2) 

Replacing (B 2 + F2 ) by 2 cos 2w, the spectrum is found to be equal to 

g(w) = Va . O ~ w ~ 71'. 
1.656 + 1.62 cos 2w' 

The spike of the previous case, as seen in Figure 2.6b, has now become a hill. 
If we increase the variance of the stochastic input at, as shown in part c of the 
figure, the width of the hill (i.e., the dispersion of w around íT /2) increases. 
Figure 2.7 compares the type of movements generated in the 3 cases. As the 
variance of the stochastic input becomes larger, the component becomes les s 
stable and more "moving". 

Figure 2.6. Spectra of AR(2) process 
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Figure 2.7. Realization of AR(2) process 
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In summary, if a series contains an important component for a certain fre­
quency Wo, its spectrum should reveal a peak around that frequency. Given 
that a good definition of a trend is a cyclical component with period T = 00, 

the spectral peak in this case should occur at the frequency w = o. 
To see sorne examples of spectra for sorne simple pracesses, we use the pre­

vious result that allows us to move fram the Wold representation to the AGF, 
and fram the AGF to the spectrum. The sequen ce is, in all cases, 
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Zt - \II(B)at: 
¡(B, F) \II(B)\II(F)Va : 

lIo + I: ¡j(Bj + Fj)]Va ; 

j 

g(w) = lIo + 2¿j¡jcosjw]Va: spectrum. 

Wold representation ; 

AGF of Zt 

1. White noise process. Then, ¡j = o for j f:. o, and hence 

g(w) = constant (Figure 2.8a). 

2. Moving Average process olorder 1: MA(l) 

Zt = (1 + B1B)at, hence \II(B) = (1 + BIB); therefore 

¡(B, F) = \II(B)\II(F)Va = (1 + BB)(l ()F)Va = 

= [1 B2+B(B+F)]Va, 

g(w) = [1 + ()2 + 2B cos w]Va 

Figure 2.8b shows an example with () < O). 

3. Autoregressive process olorder 1: AR(l) 

Zt + 4>lZt-1 = at; or (1 + <l>B)Zt = at 

Zt = (1/(1 + <l>B)) al, so that \II(B) = 1/{1 + <l>B); 

assuming 1<1>1 < 1, it is found that 

¡(B, F) = [(1 + <l>B)(1 <l>F)r1 Va = 

= [1 +<1>2 + <I>(B+ F)]t lVa ; 

g(w) = [1 + <1>2 + 2<1>coSW]]-IVa. 

The case <1> < O is displayed in Figure 2.8c. The spectrum consists of a 
peak for w O that decreases monotonically in the range [0,71" l. Therefore, the 
AR( 1) process in this case reveals a trend-type behavior. 

Figure 2.8c also displays (dotted line) the case <1> > O. The resulting spec­
trum is symmetric to the previous one around the frequency w = 71"/2, and, 
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consequently, displays a peak for w = 7r. The period associated with that peak 
is, according to (2.13), always 2. Therefore the AR(l) in this case reveals a 
cyclical behavior with period T = 2. If the data is monthly, this behavior cor­
responds to the six-times-a-year seasonal frequency; for a quarterly time series, 
to the twice-a-year seasonal frequency; for annual data, it would represent a 
two-year cycle effect. 

4. A utoregressive process 01 order 2: AR(2) 

Zt + <PIZt-I + <P2Zt-2 = at (2.31 ) 

or: 

(2.32) 

Concentrating, as we did earlier, on the homogenous part of (2.31), the char­
acteristic equation associated with that part is precisely the polynomial in B, 
with B = r- I . Thus we can find the dominant behavior of Zt from the solution 
of r 2 + <PI r + <P2 = O. Two cases can happen: 

(a) The two roots are real; 

(b) The two roots are complex conjugates. 

In case (a), if rI and r2 are the two roots (we assume IrII and Ir21 are < 1), 
the polynomial can be factorized as (1 - rI B) (1 - r2 B), and each factor will 
produce the effect of an AR( 1) process. Thus, if both rI and r2 are> O, the 
spectrum will display a peak for w = O; if one is > O and the other < O, the 
spectrum will have peaks for w = O and w = 7r; if both roots are < O, the 
spectrum will have a peak for w = 7r. 

In case (b), the complex conjugate roots will generate a cosine-type (cyclical) 
behavior. The modulus m and the frequency w can be obtained from the model 
(2.31) through 

m = ¡¡;; w = arccos (:~) ; (2.33) 

and the spectrum will display a peak for the frequency w, as in Figure 2.8d. 
In general, a useful way to look at the structure of an autoregressive process 

of order p, AR(p), a specification very popular in econometrics, is to factorize 
the full AR polynomial. Real roots will imply spectral peaks of the type 2.8c, 
while complex conjugate roots will produce peaks of the type 2.8d. 
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Figure 2.8. Examples of Spectra 
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The range 01 cyclical Irequencies 

As already mentioned, the periodic and symmetric character of the spectrum 
permits us to consider only the range of frequencies [0,11"]. When w = O, the 
period T -+ 00, and the frequency is associated with a trend. When w = 11" /2, 
the period equals 4 quarters and the frequency is associated with the first 
seasonal harmonic (the once-a-year frequency). For a frequency in the range 
[O + él, 11" /2 - é2], with él, é2 > O and él < 11"/2 - é2, the associated period 
will be longer than ayear, and bounded. Economic cyeles should thus have a 
spectrum concentrated in this range. Broadly, we shall refer to this range as 
the "range of cyelical frequencies" . 

Frequencies in the range [11"/2,11"] are associated with periods between 4 and 
2 quarters. Therefore, they imply very short-term movements (with the cy­
ele completed in less than ayear) and are of no interest for business-cyele 
analysis. Given that w = 11" is a seasonal frequency (the twice-a-year seasonal 
harmonic), the open interval offrequencies (11"/2,11"), exeluding the two seasonal 
frequencies, will be referred to as the "range of intraseasonal frequencies". 

The determination of El and E2 in order to specify the precise range of cyeli­
cal frequencies is fundamentally subjective, and depends on the purpose of 
the analysis. For quarterly data and business-cyele analysis in the context of 
short-term economic policy, obviously a cycle of period 100000 years should be 
included in the trend, not in the business cycle. The same consideration would 
apply to a 10000 years cycle. As the period decreases (and El becomes bigger), 
,ve eventually approach frequencies that can be of interest for business-cycle 
analysis. For example, if the longest cycle that should be considered is a 10 
year cyele (40 quarters), from (2.13), é} should be set as .0511". 

At the other extreme of the range, very small values of E2 can produce cycles 
with, for example, a period of 1.2 years, too short to be of cyclical interest. If 
the minimum period for a cycle is set as 1.5 years, then E2 should be set equal 
to .16711", and the range of cyclical frequencies would be [.0511", .3311"]. Figure 2.9 
shows how, from the decision on what is the relevant interval for the periods 
in a cyclical component, the range of cyclical frequencies is easily determined 
(in the figure, the interval for the period goes from 2 to 12 years). 
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Figure 2.9. Cyclical period and frequency 
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In the AR(l) model, we can let rjJ approach the value rjJ = -1. In the limit 
"\Ve obtain 

(1 - B)Zt = al, or \7 Zt = at, 

the popular random-walk model. Proceeding as in case 3. aboye, one obtains 

1 
g(w) = ( ) Va. 2 1 - cosw 

For w = 0, g(w) --+ 00, and hence the integral (2.27) does not converge, which 
is in agreement with the well-known result that the variance of a random walk 
is unbounded. The nonstationarity induced by the root rjJ = -1 in the AR 
polynomial (1 + rjJB), a unit root associated with the zero frequency, induces 
a point of infinite in the spectrum of the process for that frequency. This 
result is general: a unit AR root, associated with a particular frequency Wo, 

will produce an 00 in the spectrum for that particular frequency. 
An important example is when the polynomial S = 1 + B + B2 + B 3 is present 

in the AR polynomial ofthe series. Given that S factorizes into (1+B)(1+B2), 
its roots are -1, and ±i, associated with the frequencies 7r and 7r /2, respectively 
(as seen in Section 2.3). The Fourier transform of S, given by 

S* = 4(1 + cosw)(l + cos 2w)' 
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displays zeros for w = 7r (first factor), and w = 7r /2 (second factor). Because 
S* will appear in the denominator of the spectrum, its zeros will induce points 
of oo. Therefore, a model with an AR polynomial including S will have a 
spectrum with points of 00 for the frequencies w = 7r /2, and w = 7r, i.e., the 
seasonal frequencies. 

It follows that, in the usual case of a seasonal quarterly series, for which a 
\7\7 4 or a \72\74 differencing has been used as the stationary transformation, 
the spectrum of the series would present points of 00 for the frequencies w = 0, 
w = 7r /2, and w = 7r. Figure 2.lOa exhibits what could be the spectrum of a 
standard, relatively simple quarterly series. 

One final point. Given that a spectrum with points of 00 has a nonconvergent 
integral, and that no standardization can provide a proper spectral density, 
the term spectrum is usually replaced by Pseudo-spectrum (see, for example, 
Hatanaka and Suzuki, 1967, and Harvey, 1989). For our purposes, however, 
the points of 00 pose no serious problem, and the pseudo-spectrum can be 
used in much the same way as the stationary spectrum (this will become clear 
throughout the discussion). In particular, if, for the nonstationary series, we 
use the nonconvergent representation (2.18), compute the function ,(B, F) 
through (2.19) and, in the line of Hatanaka and Suzuki, refer to this function 
as the "pseudo-AGF", the pseudo-spectrum is the Fourier transform of the 
pseudo-AGF. Bearing in mind that, when referring to nonstationary series, 
the term "pseudo-spectrum" would be more appropriate, in order to avoid 
excess notation, we shall simply use the term spectrum in all cases. 

2.6 Linear filters and their squared gain 

Back to the linear filter (2.4) of Section 2.1, the filter can be rewritten as 

Yt = C(B, F)Xt, (2.34) 

where 
k¡ k2 

C(B,F) = ¿c_jBj +co+ ¿cjFj. 
j=l j=l 

If k1 = k2 and Cj = C_j for all j values, the filter becomes centered and 
symmetric, and we can express it as 

k 

C(B, F) = Co + ¿Cj(Bj + Fj). (2.35) 
j=l 

Using the same Fourier transform as with expression (2.24), that is, replac­
ing (Bj + Fj) by (2 cos jw), the frequency domain representation of the filter 
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becomes 
k 

C'"(w) = en + 2 ¿ Cj cos(Jw). (2.36) 
j:::l 

If k¡ :f. k2 or Cj :f. e j, the uncentered or asymmetric filter do es not accept an 
expression of the type (2.36). Additional terms involving imaginary numbers 
that do not cancel out will be presento This feature will induce a Phase effect in 
the output, in the sense that there will be a systematic distortion in the timing 
of events between input and output (for example, in the dating of turning 
points, of peaks and throughs, etc.). For our purposes, this is a disturbing 
feature and hence we shall concentrate attention on centered and symmetric 
filters. 

Being C(B,F) symmetric and Xt stationary, (2.34) directly yields 

AGF(y) = [C(B, FWACF(x), 

so that, applying the Fourier transform, we obtain 

9y(w) = [G(W)]29x(W) (2.37) 

where 9x(W) and 9y(w) are the spectra of the input and output series Xt and 
Yt and we represent by G( w) the Fourier Transform of C (B, F). The function 
G(w) will be denoted the Gain of the filter. From the relationship (2.37), 
the squared gain determines what is the contribution of the variance of the 
input in explaining the variance of the output for each different frequency. If 
G( w) = 1, the full variation of x for that frequency is passed to y; if G( w) = O. 
the variation of x for that frequency is fully ignored in the computation of y. 

vVhen interest centers in the components of a series, where the components 
are fundamentally characterized by their frequency properties, the squared 
gain function becomes a fundamental tool, since it tells us which frequencies 
will contribute to the component and which frequencies will not enter it. As an 
example, consider a quarterly series with spectrum that of Figure 2.10a. The 
peaks for w :::= O, 1f /2, and 1f imply that the series contains a trend component 
and a seasonal component, associated with the once-and twice-a-year frequen­
cies. A seasonal adjustment filter will be one with a squared gain displaying 
holes for the seasonal frequencies that will remove the seasonal spectral peaks, 
leaving the rest basically unchanged (Figure 2.10b displays the squared gain 
of the default-Xl1 seasonal adjustment filter). A detrending filter will be one 
with a squared gain that removes the spectral peak for the zero frequency, and 
leaves the rest approximately unchanged (Figure 2.10c displays the squared 
gain of the Hodrick-Prescott detrending filter, for the case of ).. = 1000). 
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Figure 2.10 
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One final important clarification should be made. We said that, in order to 
avoid phase effects, symmetric and centered filters would be considered. Let 
one such filter be 

Yt = CkXt-k + ... + C¡Xt_¡ + COXt + C¡Xt+l + ... + CkXt+k· (2.38) 

Assume a long series and let T denote the last observed periodo When T ~ t+k, 
the filter can be applied to obtain Yt with no problem. However, when T < t+k, 
observations at the end of the series, needed to compute Yt, are not available 
yet, and hence the filter cannot be applied. As a consequence, the series Yt 

cannot be obtained for recent enough periods, because unknown future ob­
servations of Xt are needed. The fact that interest typically centers on recent 
periods has lead filter designers to modify the weights of the filters when trun­
cation is needed because a lack of future observations (see, for example, the 
analysis in Burridge and Wallis, 1984, in the context of the seasonal adjust­
ment filter X11.) Application of these truncated filters yields a preliminary 
measure of Yt, because new observations will imply changes in the weights, until 
T ~ t + k and the final (or historical) value of Yt can be obtained. One mod­
ification that has become popular is to replace needed future values, not yet 
observed, by their optimal forecasts, often computed with an ARIMA model 
for the series Xt. Given that the forecasts are linear functions of present and 
past values of Xt, the preliminary value of Yt obtained with the forecasts will 
be a truncated filter applied to the observed series. Naturally, preliminary 
(truncated) filters will not be centered, nor symmetric. (In particular, the 
measurement of Yt obtained when the last observed period is t, i.e., when T=t, 
the so-called "concurrent" estimator, will be a purely one-sided filter). Besides 
its natural appeal, replacing unknown future values with optimal forecasts has 
the convenient features of minimizing (within the limitations of the structure 
of the particular series at hand,) both, the phase effect, and the size of the 
total revision the preliminary estimator will undergo until it becomes final. To 
this important issue of preliminary estimation and revisions we shall return in 
the following sections. 
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3 ARIMA models and signal extraction 

3.1 ARIMA models 

Back to the Wold representation (2.18) of a stationary process, Zt = 'I!(B)at, 
the representation is of no help from the point of view of fitting a model 
because, in general, the polynomial 'I! (B) will contain an infinite number of 
parameters. Therefore we use a rational approximation of the type 

'I!(B)~ ()(B) 
<p( B) , 

where ()( B) and <p( B) are finite polynomials in B of order q and p, respectively. 
Then we can write 

(3.1 ) 

The model 

(1 + <PI B + ... + <ppBP)Zt = (1 + ()IB + ... + ()qBq)at (3.2) 

is the Autoregressive Moving-A verage process of orders p and q; in brief, the 
ARMA(p,q) model. For further reference, the Inverse Model of (3.1) is the one 
that results from interchanging the AR and MA polynomials. Thus 

()(B)Yt = <p(B)bt, 

with bt white noise, is an inverse model of (3.1). Equation (3.2) can be seen as a 
non-homogeneous difference equation with forcing function ()(B)at, an MA(q) 
process. Therefore, if both si des of (3.2) are multiplied by Zt-k, with k > q, 

and expectations are taken, the right hand side of the equation vanishes, and 
the left hand side becomes: 

/k + <PI/k-l + ... + <Pp/k-p = O, (3.3) 

01' 

(3.4) 

where B operates on the subindex k. The Eventual Autocorrelation Function 
(that is, /k as a function of k, for k > q) is the solution of the homogeneous 
difference equation (3.3), with characteristic equation 

rP + <PlrP-1 + ... + <pp = O. (3.5) 
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If 'r}, ... , 'rp are the roots of (3.5) the solution of (3.3) can be written as 
P 

Ik = ¿'rf, 
i=l 

and will converge to zero as k -+ 00 when hl < 1, i = 1, ... ,p. Comparison of 
(3.5) with (3.3) shows that '1'1, ••• ,'rp are the inverses of the roots Bl , ••• , Bp 
of the polynomial 

</>(B) =0 

that is, 'ri Bi-
l

• Convergen ce of Ik implies, thus, that the roots (in B) of the 
polynomial </>( B) are a11 larger than 1 in modulus. This condition can also be 
stated as follows: the roots of the polynomial </>( B) have to lie outside the unit 
circle (of Figure 2.1a). \iVhen this happen, we shall say that the polynomial 
ó(B) is stable. From the identity 

</>(Bt l = 1 , 
(1 - 'rlB) ... (1 - 'rpB) 

it is seen that stability of </>( B) implies, in turn, convergen ce of its 1l1verse 
<p(Bt l

. 

From (2.19), considering that W(B) = O(B)j</>(B), the AGF of Zt is given by 

O(B) O(F) 
I(B, F) = </>(B) </>(F) Va· (3.6) 

and it is straightforward to see that stability of </>( B) will imply that the 
stationarity conditions of Section 2.4 are satisfied. The AGF is symmetric 
and convergent, and the eventual autocorrelation function is the solution of a 
difference equation, and hence, in general, a mixture of damped polynomials in 
time and periodic functions. The Fourier transform of (3.6) yields the spectrum 
of Zt, equal to 

(3.7) 

and the integral of gz(w) over O :S w :S 27r is equal to 27rVa'r(zt). 
A useful result is the following. If two stationary stochastic processes are 

related through 

Yt = C(B)Xt, 

then the AGF of Yh ,y(B, F), is equal to 

,y(B, F) = C(B)C(F),x(B, F), 

where IX( B, F) is the A GF of Xt. Finally, a function that will prove helpful 
is the Crosscovariance Generating FunctÍon (CGF) between two series, Xt and 
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Yt, with Wold representation 

Xt = a(B)at 

Yt = (3( B)at. 

Letting Ij = E(XtYt-j) denote the lag-j crosscovariance between Xt and Yt, 
j = O, ±1, ±2, ... , the CGF is given by 

00 

CGF(B, F) = ¿ IjBj = a(B){3(F)(7~. 
-00 

If, in equation (3.2), the subindex t is replaced by t+k (k a positive integer), 
and expectations are taken at time t, the forecast of Zt+k made at time t, 
namely Zt+klt, is obtained. Viewed as a function of k (the horizon) and for a 
fixed origin t, Zt+klt is denoted the Forecast Function. (It will be discussed in 
more detail in subsection 3.2.3). Given that Etat+k = O for k > O, it is found 
that, for k > q, the forecast function satisfies the equation 

Zt+klt + 4>IZt+k-Ilt + ... + 4>p Zt+k-plt = O, 

where Zt+jlt = Zt+j when j :::; O. Therefore, the Eventual Forecast Function is 
the solution of 

4>( B)Zt+klt = O, (3.8) 

with B operating on k. Comparing (3.4) and (3.8), the link between autocor­
relation for lag k (and longer) and k-period-ahead forecast becomes apparent, 
the forecast being simply an extrapolation of correlation: what we can fore­
cast is the correlation we have detected. For a zero-mean stationary process 
the forecast function will converge to zero, following, in general, a mixture of 
damped exponentials and cosine functions. 

In summary, stationarity of an ARMA model, which requires the roots (in 
B) of the autoregressive polynomial 4>(B) to be larger than 1 in modulus, 
implies the following model properties: a) its AGF converges; b) its forecast 
function converges; and c) the polynomial ct>(B)-1 converges, so that Zt accepts 
the convergent (infinite) MA representation 

(3.9) 

which is precisely the Wold representation. To see sorne examples, for the 
AR(l) model 

Zt + 4>Zt-1 = at, 

the root of 1 + 4>B = O is BI = -1/4>. Thus stationarity of Zt implies that 

1 
IBII = I~I > 1, 
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or 1<p1 < 1. 
For the AR(2) model 

Zt + <PI Zt-I + <P2Zt-2 = at, 

stationarity implies that the two roots, BI and B2 be larger than one in mod­
ulus. This requires the coefficients <PI and <P2 to lie inside the triangular region 
of Figure 3.1. The parabola inside the triangle separates the region associ­
ated with complex roots from the one with real roots (Box and Jenkins, 1970, 
Section 3.2). 

If Zt is the differenced series, for which stationarity can be assumed, that is 

Zt=DXt, D='\ld, d=0,1,2, ... , 

then the original nonstationary series Xt follows the Autoregressive Integrated 
tvloving-Average process of orders p,d, and q, or ARIMA(p,d,q) model, given 
by 

(3.10) 

p and q refer to the orders of the AR and MA polynomials, respectively, and 
d refers to the number of regular differences (i.e., the number of unit roots at 
the zero frequency). We shall often use abbreviated notation, namely 

AR(p): autoregressive process of order p; 

MA( q): moving-average process of order q; 

ARI(p,d): autoregressive process of order p applied to the dth difference of 
the series; 

IMA( d,q): moving-average process of order q applied to the dth difference of 
the series. 

Further, a series will be denoted I( d) when it requires d regular differences 
in order to become stationary. 
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Fig 3.1: Stationarity region for AR(2) parameters 
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As in the stationary case, taking conditional expectations at time t in both 
sides of equation (3.10) with t replaced by t+k, where k is a positive integer, 
it is obtaíned that 

where 

Xt+jlt = E(xt+j I Xt,Xt-I"") 

is the forecast of Xt+j obtained at time t when j > O, and is the observation 
Xt+j when j ::; O; further, at+jlt = E(at+j I Xt,Xt-h"') is equal to O when 
j > O, and is equal to aHj when j < O. As a consequence, the eventual 
forecast function (Xt+klt as a function of k, for k > q) will be the solution of 
the homogenous difference equation 

<fy(B)DXt+klt O, 

with B operating on k. The roots of D all have unit modulus; if D = \7d, 
then the eventual forecast function will include a deterministic polynomial in 
t of the type (a + btd

- l ). If D also includes seasonal differencing \74 , then the 
eventual forecast function will also contain the non-convergent deterministic 
cosine-type function (2.14), associated with the once and twice-a-year seasonal 
frequencies, w = rr/2 and w = rr. 

As an example, the forecast function of the model 

(1 - .7B)\7"\l4Xt = (1 + (J¡B)(1 + 04B4)at, 

will consists of five starting values Xt+jlt, j 1, ... ,5, implied by the MA part 
with after which the function will be the solution of the homogenous 
equation associated with the AR parto Factorizing the AR polynomial as 

(1 - .7 B)(1 - B)2(1 + B)(1 + B 2), 

the roots of the characteristic equation are given by 

From Section 2.3, the eventual forecast function can be expressed as 

Xt+klt c~t) (. 7)k + c~t) + c~t) k + c~t) ( _1)k + c~t) cos (% k + c~t)) , 
where the last two terms reflect the seasonal harmonícs (the root f4 = -1 can 
also be written as c~t) cos rrk). The constants Cl¡ ... , C6 are determined from 
the starting conditions of the forecast functíon, and hence will depend on t, 
the origin of the forecast. This feature gives the ARIMA model its adaptive 
(or "moving") properties. Notice that, in the nonstationary case, the forecast 
function (with fixed origin t and increasing horizon k) will not converge. 

Concerning the MA polynomial O( B), a similar condition of stability will 
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be imposed, namely, the roots B l , ... , Bq of the equation O(B) = O have to 
be larger than 1 in modulus. This condition is referred to as the Invertibility 
condition for the process and, unless otherwise specified, we shall assume that 
the model for the observed series Zt is invertible. This assumption implies that 
O(B)-1 converges, so that the model (3.1) can be inverted and expressed as 

at = 0(Bt1Ó(B)zt = ll(B)zt, (3.11) 

which shows that the series accepts a convergent (infinite) AR expression, and 
hence can be approximated by a finite AR. Expression (3.11) also shows that, 
when the process is invertible, the innovations can be recovered from the Zt 

senes. 
Sorne frequency domain implications of nonstationarity and noninvertibility 

are worth pointing out. Assume that the MA polynomial O(B) has a unit root 
I Bll 1 -perhaps a complex conjugate pair- associated with the frequency Wl. 

Then, 0(e-iW1
) = O, and the spectrum of Zt, given by (3.7), will have a zero 

for the frequency Wl. Analogously, if I BI! = 1 is a root of the AR polynomial 
Ó(B), with associated frequency Wl 1 then, ó(e-iw¡) = O, and g(w¡) -+ 00 

. It follows that 

• a unit MA root causes a zero in the spectrum; 

• a unit AR root causes a point of 00 in the spectrum; 

• an invertible model will have strictly positive spectrum, g(w) > O; 

• a stationary model has a bounded spectrum, g( w) < oo. 

To illustrate the spectral implications of unit roots, Figure 3.2a presents the 
spectrum of the model 

(1 - B)Xt = (1 + B)at. 

Since the spectrum is proportional to (1 +cosw )j(l-cos w), the unit AR root 
B 1 for the zero frequency makes the vertical axis an asymptote. The unit 
MA root B = -1 for w = 7r creates a zero for this frequency. The spectrum of 
the inverse model 

(1 + B)Xt = (1 - B)at 

is displayed in Figure 3.2b. The unit AR root for w = 7r implies that the line 
w 7r is an asymptote, and the unit MA root for w O implies a spectral zero 
at the origino 

For quarterly data with seasonality, the differencing D is likely to contain 
the seasonal difference V 4. A popular specification that increases parsimony 
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Figure 3.2 
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of the model and permits us to capture seasonal effects is the Multiplicative 
seasonal model 

(3.12) 

where the regular AR polynomial in B, </1(B), is as in (3.2), if.>(B4
) is the 

seasonal AR polynomial in B4
, d is the degree of regular differencing, D is 

the degree of seasonal differencing, O(B) is the regular MA polynomial in B, 
0( B4) is the seasonal MA polynomial in B4, and at denotes the series white­
noise (O, Va) innovation. The polynomials </1(B),if.>(B4 ),O(B) and 0(B4

), are 
assumed stable, and hence the series ' 

Zt = vdVfXt 

follows a stationary and invertible process. (To avoid nonsense complications, 
we assume that the stationary AR and invertible MA polynomials are prime.) 
If p, P, q, and Q denote the orders of the polynomials </1( B), if.>(/1)) O( B) and 
0(/1), respectively, where /1 = B\ model (3.12) will be referred to as the 
multiplicative ARIMA (p, d, q)(P, D, Q)4 model. In practice, we can safely 
restrict the orders to 

p,q 
P 
Q 
d 
D 

< 4' - ) 

< l' - , 
< 2' - ) 

< 2' - ) 

SI. 

(3.13) 

Two important practical comments (to bear always in mind) are the following: 
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1. Parsimony (i.e., few parameters) should be a crucial property of ARIMA 
models used in practice. 

2. ARIMA models are a useful tool for relatively short-term analysis. Their 
flexibilityand adaptive behavior contribute to their good short-term fore­
casting. Long-term extrapolation of this flexibility may imply, however, 
unstable long-term inference (see M aravall , 1999). As a general rule, 
short-term analysis favors differencing, while long-term one favors more 
deterministic trends, that imply less differences. 

3.2 Modelling strategy, diagnostics and inference 

The so-caBed Box-Jenkins approach to building ARIMA models consists of the 
following iterative scheme that contains 4 stages: 

3.2.1 Identification 

Two features of the series have to be addressed, 

• the degree of regular and seasonal differencing; 

• the orders of the stationary AR and invertible MA polynomials. 

Differencing of the series can employ so me of the unit root tests available for 
possibly seasonal data (see, for example, Hylleberg et al, 1990). Devised to test 
deterministic seasonals versus seasonal differencing, these test are of little use 
for our purpose. In our experience, stochastic modelling removes in practice the 
need for the dilemma: deterministic specification versus differencing. Consider, 
for example, the two models: 

(a) Xt = ¡.,t + at, 

(b) V Xt (1 .99B)at. 

For a quarterly series, and realistic series length, it is impossible that the 
sample information can distinguish between the two specifications. Conse­
quently, the choice is arbitrary. Besides the variance of ah Model (a) contains 
one parameter that needs to be estimated, while Model (b) contains none (al­
though, in this case the first observation is lost by differencing). Model (a) 
offers, thus, no estimation advantage. If short-term forecasting is the main 
objective, however, Model (b) wi11 display some advantage because it allows 
for more flexibility, given that it could be rewritten as Xt ¡.,t(t) + ah where 
¡.,t(t) is a very slowly adapting mean. 

A similar consideration applies to seasonal variations. The model 
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where djt denotes a quarterly seasonal dummy variable, is in practice indis­
tinguishable from the direct specification 

The deterministic specification has now 4 parameters; the stochastic one has 
none, but 4 starting values are lost at the beginning .. The latter can also be 
expressed as 

3 

Xt = p(t) + ¿ (3jt)d jt + at, 

j=1 

where p(t), (3(t) denote slowly adapting coefficients. Within our short-term 
perspective, there is no reason thus to maintain the deterministic-stochastic di­
chotomy, and deterministic features can be seen as extremely stable stochastic 
ones. 

Besides the lack of power of unit roots tests to distinguish between models 
(a) and (b), or (c) and (d), the process of building ARIMA models typically 
implies estimation of many specifications (if combined with outlier detection 
and correction, the number may be indeed very large) and the true size of the 
tests is therefore unknown. In practice, a more efficient and reliable pro ce­
dure for determining AR unit roots is to use estimation results based on the 
superconsistency of parameter estimates associated with unit roots, having de­
termined "a priori" how close to one a root has to be in order to be considered 
a unit root (see Tiao and Tsay, 1983, 1989, and Gómez and Maravall, 2000a). 

Once the proper differencing has been established, it remains to determine 
the orders of the stationary AR and invertible MA polynomials. Here, the basic 
criterion used to be to try to match the SACF of Zt with the theoretical ACF 
of a particular ARMA process. In recent years, the efficiency and reliability of 
automatic identification procedures, based mostly on information criteria, has 
strongly decreased the importance of the "tentative identification" stage (see 
Fischer and Planas, 1999, and Gómez and Maravall, 2000a). 

3.2.2 Estimation and diagnostics 

\;\Then q =1 O, the ARIMA residuals are highly nonlinear functions of the model 
parameters, and hence numerical maximization of the likelihood function, or 
of sorne function of the residual sum of squares, can be computationally non­
trivial. Within the restrictions in the size of the model given by (3.13), how­
ever, maximization is typically well behaved. A standard estimation pro ce­
dure would cast the model in a state-space format, and use the Kalman filter 
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to compute the likelihood through the Prediction Error Decomposition. The 
likelihood is then maximized with sorne nonlinear procedure. Usually, the 
Va parameter, as well as a possible constant mean, are concentrated out of 
the likelihood. When the series is nonstationary, several solutions have been 
proposed to overcome the problem of defining a proper likelihood. Relevant 
references are Bell and Hillmer (1991), Brockwell and Davis (1987), De Jong 
(1991), Gómez and Maravall (1994), Kohn and Ansley (1986), and Morf, Sidhu 
and Kailath (1974). Several of these references deal, in fact, with more general 
models than the straightforward ARIMA one. 

Many diagnostics are available for ARIMA models. A crucial one, of course, 
is the out-of-sample forecast performance. Sorne test for in-sample model 
stability are also of interest. Then, there is a large set of test based on the 
model residuals, assumed to be niid. This implies testing for Normality, for 
autocorrelation, for homoscedasticity, etc. Besides the ones proposed by Box 
and Jenkins (1970), additional references. can be Newbold (1983), Gourieroux 
and Monfort (1990), Harvey (1989), and Hendry (1995). 

3.2.3 Inference 

If the diagnostics are faíled, in the light of the results obtained, the model 
specification should be changed. When the model passes all diagnostics, we 
may then proceed to inference. We shall look in particular at an application 
in forecasting, unquestionably the main use of ARIMA models. 

Let (3.10) denote, in compact notation, the ARIMA model identified for the 
series Xi, and, as in Section 3.1, denote by Xt+jlt the forecast of xt+j made at 
period t (in Box-Jenkins notation, Xt+jlt Xt(j).) Under our assumptions, the 
optimal forecast of Xt+j, in a Minimum Mean Square Error (MMSE) sense, 
is the expectation of Xt+k conditional on the observed time series Xl,' .. ,Xt 
(equal also, to the projection of Xt+k onto the observed time series); that is, 

Xt+jlt = E(xt+k I xll···,xd· 

This conditional expectation can be obtained with the Kalman filter, or with 
the Box-Jenkins procedure (for large enough t). Recall that, for known pa­
rameters, 

at = Xt Xtlt- 11 

that is, the innovations of the process are the sequence of one-period-ahead 
forecast errors. 

The forecast function at time t is Xt+klt as a function of k (k a positive 
integer). In Section 3.1 we saw that for an ARIMA (p,d,q) model, the forecast 
function consists of q starting conditions, after which it is given by the solution 
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of the homogenous AR difference equation 

qt(B)xt+klt = O, (3.14) 

where B operates on k, and <jJ*( B) denotes the full AR convolution <jJ*( B) 
<jJ(B)D, and includes thus the unit roots. 

A useful way to look at forecasts is directly based on the pure MA represen­
tation w(B), even in the nonstationary case of a nonconvergent W(B). Assume 
the model parameter are known and write 

(3.15) 

Given that, for k > O, Etat+k = O and Etat-k = at-k, taking conditional 
expectations in (3.15) yields 

00 

Xt+klt = EtXt+k = ¿ 1/Jk+j at-j; (3.16) 
j=O 

so that the forecast is a linear combination of past and present innovations. 
Substracting (3.16) from (3.15), the k-periods-ahead forecast error is given by 
the model 

et+klt = Xt+k - xt+klt 

at+k + 1/Jlat+k-l + ... + 1/Jk-l a t+1, (3.17) 

an MA(k-1) process of "future" innovations. From expression (3.17), thejoint, 
marginal, and conditional distributions of forecast errors can be easily derived, 
and in particular the standard error of the k-period ahead forecast, equal to 

SE(k) = (1 + 1/Ji + ... + 1/JLl)1/2(Ya. (3.18) 

Unless the series is relatively short, this standard error, estimated by using 
l\1L estimators of the parameters, will provide a good approximation. Figure 
3.3 displays the last 3 years of observations and the next 2 years of ARIMA 
forecasts for a quarterly series. The forecast function is dominated by a linear 
trend plus seasonal oscillations; the width of the confidence interval increases 
with the horizon. 

41 



Figure 3.3 Forecasts and 90% confidence interval 
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3.2.4 A particular class of models 

Box and J enkins (1970) dedicate a considerable amount of attention to a par­
ticular multiplicative model that, for quarterly series, takes the form 

(3.19) 

(a regular IMA(1,1) structure multiplied by a seasonal IMA(1,1) structure). 
Given that they identified the model for a series of airline passengers, it has 
become known as the "Airline model". Often, the model is obtained for the 
logs, in which case a rough first reading shows that the rate-of-growth of the 
annual difference is a stationary process. 

The model is highly parsimonious, and the 3 parameters can be given a 
structural interpretation. As seen in Section 3.1, when el -+ -1, the trend 
behavior generated by the model becomes more and more stable and, when 
e4 -+ -1, the same thing happens to the seasonal component. Estimation 
of MA roots close to the noninvertibility boundary poses no serious problem, 
and fixing a priori the maximum value of the modulus of a MA root to, for 
example, .99 produces perfectly behaved invertible models. 

If estimation of (3.19) yields, for example, e4 = -.99, two (mutually exclu­
sive) things can explain the result: 
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1) seasonality is practically deterministic; 

2) there is no seasonality, and the modeI is overdifferenced. 

Determining which of the two is the correct explanation is rather simple by 
testing for the significance of seasonal dummy variables. When the model has 
no seasonality, the seasonal filter \7 4Zt = (1 - .99B4)bt would have hardly any 
effect on the input series. A similar reasoning holds for 01 and the possible 
presence of a deterministic trend. Further, a purely white-noise series filtered 
with model (3.19) with 01 = 04 = -.99 would, very approximately, reproduce 
the series. Thus the Airline model also encompasses simpler structures with no 
trend or no seasonality. Adding the empírical fact that it provides reasonably 
good fits to many actual macroeconomic series (see, for example, Fischer and 
Planas, 1999, or Maravall, 2000), it is an excellent model for illustration, for 
benchmark comparison, and for pre-testing. 

3.3 Preadjustment 

We have introduced the ARIMA model as a practical way of dealing with 
moving features of series. Still, before considering a series appropriate for 
ARIMA modelling, several prior corrections or adjustments may be needed. 
We shall classify them into 3 groups. 

1. OUTLIERS 

The series may be subject to abrupt changes, that cannot be explained 
by the underlying normality of the ARIMA model. Three main types of 
outlier effects are often distinguished: a) additive outlier, which affects 
an isolated observation, b) level shift, which implies a step change in the 
mean level of the series, and c) transitory change, similar to an additive 
outlier whose effect damps out over a few periods. Chen and Liu (1993) 
suggested an approach to automatic outlier detection and correction that 
has lead to reliable and efficient procedures (see Gómez and M aravall , 
2000a). 

2. CALENDAR EFFECT 

By this term we refer to the effect of calendar dates, such as the number 
of working days in a period, the location of Easter effect, or holidays. 
These effects are typically incorporated into the model through regression 
variables (see, for example, Hillmer, Bell and Tiao, 1983, and Harvey, 
1989). 
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3. INTERVENTION VARIABLES 

Often special, unusual events affect the evolution of the series and can­
not be accounted for by the ARIMA model. There is thus a need to 
"intervene" the series in order to corred for the effect of special events. 
Examples can be strikes, devaluations, change of the base index or of the 
way a series is constructed, natural disasters, political events, important 
tax changes, or new regulations, to mention a few. These special effects 
are entered in the model as regression variables (often called, following 
Box and Tiao, 1975, intervention variables). 

The full model for the observed series can thus be written as 
k 

Yt = w~{J + C:r¡ + '2:>l:jAj(B)/t(t j ) + Xt 
j=I 

(3.20) 

where {J = ({JI, ... , {Jn)', is a vector of regression coefficients, w~ = (WIt, ... ,Wnt) 
denotes n regression or intervention variables, e: denotes the matrix with 
columns the calendar effect variables (trading day, Easter effect, Leap year ef­
fect, holidays), and r¡ the vector of associated coefficients, /t( t j ) is an indicator 
variable for the possible presence of an outlier at period tj, Aj(B) captures 
the transmission of the j-th outlier effect (for additive outliers, Aj (B) 1, for 
level shifts, Aj(B) = 1/'V, for transitory changes, Aj(B) 1/(1 - óB), with 
O < ó < 1,) and aj denotes the coefficient of the outlier in the multiple regres­
sion model with k outliers. Finally, Xt follows the general (possibly multiplica­
tive) ARIMA model (3.12). As mentioned earlier, there are several procedures 
for estimation of models of this type, and easily available programs that en­
force the procedures (examples are the programs REGARIMA, see Findley 
et aL 1998, and TRAMO, see Gómez and Maravall, 1996). Noticing that 
intervention variables, outliers, and calendar effects are regression variables, 
the full model can be expressed as a regression-ARIMA model. Estimation 
typically proceeds by iterating as follows: conditional on the regression pa­
rameters ({J, r¡, a), exact maximum likelihood estimation of the ARIMA model 
is performed; then, conditional on the ARIMA model, GLS estimators of the 
regression parameters are obtained (both steps can be done with the Kalman 
filter ). 

Bearing in mind that preadjustment should be a "must" in applied time 
series work, for the rest of this book, we shall assume that the series do not 
require preadjustment, or have already been subject to one. The series can be 
directly seen, then, as the out come of an ARIMA process. 

Figures 3.4 and 3.5 illustrate preadjustment in quarterly (simulated) series. 
The observed original series is displayed in Figure 3.4a. After removal (through 
regression) of the outliers automatically identified in the series (2 additive 
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outliers, 1 level shift, and 1 transitory change) whose effect is displayed in 
Figure 3.5a, of the trading-day effect (captured, in this case, with a variable 
that counts the number of working days) shown in Figure 3.5b, of the Easter 
effect, exhibited in Figure 3.5c, and of an intervention variable associated with 
the introduction of a regulation that affects the seasonal effect for the last two 
quarters of each year, the remaining series is displayed in Figure 3.4b. This 
is the preadjusted series, also referred to as the "linearized series", given that 
it can be assumed the output of a linear stochastic process (modelled in the 
ARIMA format). 

In the final decomposition of the observed series, that we shall be discussing 
in the following sections, the different regresion effects (outliers, calendar ef­
fects, and intervention variables) can be associated with different components. 
Thus, typically, calendar effects will be associated with the seasonal compo­
nent, additive and transitory outliers will be assigned to the irregular com­
ponent, and level shifts to the trend-cycle component. Care should be taken, 
however, when a separate business-cycle component is being estimated, be­
cause it may require a different allocation of the deterministic effects. For 
example, when annual data is being used, a transitory change that takes 5 
or 6 periods to become negligeable should probably be included in the cycle, 
not in the irregular. Likewise, the correction produced by two level shifts of 
opposite sign and similar magnitude possibly should be assigned to the cycle, 
not to the long-term trend. 
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Figure 3.4. Preadjustment 
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Figure 3.5. Deterministic Effects 
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3.4 Unobserved components and signal extraction 

Assume we are interested in sorne unobserved component buried in the ob­
served series. Examples can be the seasonally adjusted (SA) series, sorne un­
derlying short-term trend, or perhaps sorne cycle. We refer to the component 
of interest as the Signal, and assume it can be extracted from Xt in an additive 
manner, as In 

(3.21) 

where nt denoted the non-signal component of the series. (If the signal is the 
SA series, nt would be the seasonal component; if the signal is the short-term 
trend, an additional noise or transitory component may also be included in nt). 
The decomposition can also be multiplicative, as in Xt = Stnt. Taking logs, 
however, the additive structure is recovered. For the rest of the discussion we 
shall consider the additive decomposition. (A more complete presentation can 
be found in Planas, 1997). 

We further assume that both components are linear stochastic processes, say 

4>AB)St Os(B)ast (3.22) 

4>n(B)nt On(B)ant. (3.23) 

The AR polynomials 4>s(B) and 4>n(B) also include possible unit roots; in 
fact, in the vast majority of applications, at least one of the components will 
be nonstationary. This is because the very concept of a trend or a seasonal 
component imply a mean that changes with time, and hence a nonstationary 
behavior that can be removed by differencing. 

Concerning expressions (3.22) and (3.23), the following assumptions will be 
made: 

(A.l) The variables ast and ant are mutually independent white-noise pro­
cesses, with zero mean, and variances "Vs and Vn , respectively. 

(A.2) The polynomials 4>s(B) and 4>n(B) are prime. 

(A.3) The polynomials Os(B) and On(B) share nounit root in common. 

The first assumption is based on the belief that what causes, for example, 
seasonality (weather, time of year) is not much related to what may drive 
a long-term trend (technology, investment), and similarly for other compo­
nents. Given that different components are associated with different spectral 
peaks, assumption A.2 seems perfectly sensible. Assumption A.3 is not strictly 
needed, but in practice it is hardly restrictive and simplifies considerably no­
tation. The assumption states a sufficient condition for invertibility of the Xt 
senes. 
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Because aggregation of ARIMA models also yields an ARIMA model, the 
series Xt will follow an ARIMA model, which we write as 

(3.24 ) 

where at is a white noise variable, 8( B) is ínvertible, and <p( B) is given by 

<p(B) = <Ps(B)<Pn(B). (3.25) 

The following identity ís implied by (3.22)-(3.24): 

8(B)at cPn(B)8s (B)a st + <ps(B)8n(B)ant, 

which shows the relatively complicated relationship between the series innova­
tions and the innovations in the components (see Maravall, 1995) 

Having observed a time series XT = [Xl,"" XT] our aim is: 1) to obtain 
Mínimum :\1ean Square Error (MMSE) estimators of St (and nt), as well as 
forecasts; 2) to obtain the full distribution of these estimators, from which 
diagnostics can be derived; 3) to obtain standard errors for the estimators 
and forecasts; and 4) to analyze sorne important features, such as revisions in 
preliminary estimators, both in terms of size and speed of convergence to the 
historical estimators. 

1. Known models 

For the stationary case, the full distribution of (st, XT ) is known. Under 
sorne additional assumptions (see, for example, Bell and Hillmer, 1991, and 
Gómez and :\1 aravall , 1993) an appropriate conditional distribution can also 
be derived for the nonstationary case. The joint distribution is multivariate 
normal, so that the conditional expectation of the unobserved St, given XT , is 
a linear combination of the elements in XT . This conditional expectation also 
provides the MMSE estimator, St, which can thus be expressed as the linear 
filter 

St E(st Ix), ... , XT) = Q)X) + Q2 X 2 + ... + QTXT. 

The aboye conditional expectation can be computed with the Kalman filter 
Harvey, 1989) or with the \iViener-Kolmogorov (WK) filter (see Box, Hillmer 
and Tiao, 1978). The equivalen ce of both filters, also when the series is nonsta­
tionary, is shown in Gómez (1999). Both filters are efficient; while the Kalman 
filter has a more flexible format to expand the models, the WK filter is more 
useful for analysis and interpretation. It will be the one used in the discussion. 

We start by considering the case of an infinite realization (x- co ,'" xco ). (In 
practice, this means that we start with historical estimation for the central 
years of a long-enough series.) As shown in \iVhittle (1963), the WK filter that 
yields the MMSE of St when model (3.24) is stationary is given by the ratio of 
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the AGF of St and Xt, namely 

, [AGF(sd] 
St = AGF(xd Xt = 

v. Bs(B)Bs(F) 1 
s </Ys(B)</Ys(F) 

B(B)8(F) Xt· 

Va </Y ( B)</y( F) 

(3.26) 

Notice that an important feature of the WK filter (enforced in this way) is 
that it only requires the specification of the model for the signal, once the 
model for the observed series has been identified. Contrary to other model­
based approaches enforced with the Kalman filter, such as the Structural Time 
Series Model (STSM) approach of Harvey (1989), with the WK filter there is 
no need to specify the components that aggregate into the non-signal nt. In 
view of (3.25), the filter simplifies into 

(3.27) 

where ks = Vs/Va. Direct inspection of (3.27) shows that the filter is the AGF 
of the stationary model 

(3.28) 

where bt is white noise with variance (Vs/Va). The filter is thus convergent in 
B and F, centered at t, and symmetric. 

In order to analyze the properties of the estimated signal, we shall be in­
terested in its spectrum. If gs(w),gn(w) and g(w) denote the spectrum of the 
signal, the non-signal component, and the observed series, respectively, orthog­
onality of St and nt imply 

g(w) = gs(w) + gn(w), 

where the two components spectra are nonnegative, and g(w) is strictly positive 
(due to the invertibility condition on the observed series). 

The gain of the WK filter, given by the expression in brackets in (3.26), is 
the Fourier transform of the ratio of two AGFs, so that 

G(w) = gs(w)/g(w). 

Thus, according to (3.26), the spectrum of the MMSE estimator St, denoted 
gs(w) is given by 

g;(w) [~(~ir g(w) ~ 

[
gs(W)] () = 
g(w) gs W 
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= G(w )gs(w). (3.29) 

Given that G(w) :::; 1, it follows that 

gs(w) :::; gs(w), 

and hence the MMSE estimator will underestimate the variance of the theo­
retical component. 

The filter is well defined everywhere when the c,b-polynomials contain unit 
roots, and, in fact, extends, in a straightforward manner, to the nonstation­
ary case (see Bell, 1984, and Maravall, 1988). As for the distribution of the 
estimator st, for the general nonstationary case, assume the polynomial <Ps( B) 
can be factorized as 

where Ds contains all unit roots, and 'Ps(B) is a stable polynomial. Multiplying 
(3.27) by Ds, and replacing DsXt by 

[O( B) / 'Ps( B)4>n( B)]at, 

it is obtained that 

(3.30) 

which provides the model that generates the stationary transformation of the 
estimator Sto It is seen that MMSE estimation preserves the differencing of 
the theoretical component, but has an effect on the stationary structure of 
the model. The part in B of the model generating the estimator is identical 
to that of the component; the model for the estimator, however, contains a 
part in F (that gradually converges towards zero), reflecting the contribution 
of innovations posterior to t to the historical estimator for period t. Theo­
retical component, given by (3.22), and MMSE estimator will have the same 
stationary transformation, but the AGF and spectra will differ. Further, it is 
straightforward to see that the A G F of the historical estimation error, 

is equal to the AGF of the stationary ARMA model 

O(B)Zt = Os(B)On(B)bt, (3.31) 

where bt is white noise with variance (Vs Vn)/Va (see Pierce,1979). Stationarity 
of (3.31) implies that component and estimator are cointegrated. 

As was mentioned in Section 2.6, for a finite realization of the Xt process, 
it will happen that, for periods close enough to both ends of the series, it will 
not be possible to apply the complete two-sided filter. Denote by 1/( B, F) the 
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filter in brackets in express ion (3.27), namely 

(B F) = k (}s( B)<Pn( B) (}s( F)<Pn( F) 
1/, s (}(B) (}(F) , (3.32) 

and assume it can be safely truncated after L periods, so that we can write 
the historical estimator as 

L 

St = 1/0Xt + L I/j(Xt_j + Xt+j). 
j=l 

(3.33) 

Let the time series available be (Xl, . .. ,XT) and, to avoid problems with first 
observations, let T > L. Assume we wish to estimate St for t ::; T and 
(T - t) > L, that is for relatively recent periods. According to (3.33), we need 
L - (T - t) observations at the end of the filter that are not available yet, 
namely, XT+1, XT+2, ... ,XT+L-(T-t) . Replacing these future values with the 
ARIMA forecasts computed at time T, we obtain the preliminary estimator. 
Rewriting (3.33) as 

St I/LXt-L + ... + 1/0Xt + ... + I/(T-t)XT + 
+ I/(T-t+1)XT+1 + I/(T-t+2)XT+2 + 
+ ... + I/L X t+L, (3.34) 

and taking conditional expectations at time T, the preliminary estimator of 
the signal for time t, when observations end at time T, denoted StIT, is given 
by 

StlT I/L X t-L + ... + 1/0Xt + ... + I/(T-t)XT + 
+ I/(T-t+1)XT+1IT + I/(T-t+2)XT+2IT + 
+ ... + I/L X t+LIT (3.35) 

where Xt¡jt2 denotes the forecasts of Xtl obtained at period t 2 . Thus, in compact 
form, the preliminary estimator can be expressed as 

(3.36) 

where I/(B, F) is the WK-filter, and X~IT is the "extended" series, such that 

X~IT = Xt for t ::; T 

x~IT = XtlT for t > T. 

The Revision the preliminary estimator will undergo until it becomes the his­
torical one is the difference (St - StIT) or, substracting (3.35) from (3.34), 

t+L-T 

rtlT = L I/T-t+i:T+jIT, 
j=l 

(3.37) 

that is, the revision is a linear combination of the forecast errors. Large re-
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visions are unquestionably an undesirable feature of a preliminary estimator, 
and expression (3.37) shows the close relationship between forecast error and 
revision: the better we can forecast the observed series, the smaller the revision 
in the preliminary estimator of the signal will be. 

Direct application of (3.35), when t is close to the end of the series, may re­
quire for models close to noninvertibility (for which fJ(B)-1 converges slowly) 
a ver y large number of forecasts (perhaps more than 100) in order to com­
plete the filter. The Burman-\Vilson algorithm (Burman, 1980), permits us 
to capture, in a very efficient way, the effect of the infinite forecast function 
with just a small number of forecastsj for the vast majority of quarterly series, 
10 forecasts are indeed enough. A similar procedure can be applied to the 
first periods of the sample to improve starting values for the signal estimator: 
one can extend the series at the beginning with backcasts (see Box and Jenk­
ins, 1970), and apply the WK filter to the extended series, using a symmetric 
Burman-Wilson algorithm. 

By combining (3.24) with (3.27), an expression is obtained that relates the 
final estimator St to the innovations at in the observed series, to be represented 
by 

St = es(B, F)at, 

where es( B, F) can be obtained from the identity 

<Ps(B)fJ(F)es(B, F) = ksfJs(B)fJs(F)<Pn(F), 

and can be seen to be convergent in F. From (3.38), we can write 

St = e;(B)at + C(F)at+l' 

(3.38) 

(3.39) 

(3.40) 

vVhen t denotes the last observed period, the first term in (3.40) contains the 
effect of the starting conditions and of the present and past innovations. The 
second term captures the effect of future innovations (posterior to t). From 
(3.40), the concurrent estimator is seen to be equal to 

Stlt = EtSt = EtSt = e; (B)at, 

so that the revision 

rt = St - Stlt 

is the (convergent) moving average 

rt = ~;(F)at+l' (3.41 ) 

a zero-mean stationary process. Thus historical and preliminary estimators 
will also be cointegrated. From expression (3.41) it is possible to compute the 
relative size of the full revision, as well as the speed at which it vanishes. 

The distinction between preliminary estimation and forecasting of a signal 
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is, analytically, inexistent. If we wish to estimate St for t > T (i.e., to forecast 
St), expression (3.36) remains unchanged, except that now forecasts will start 
operating "earlier". For example, if the final estimator is given by (3.34) and 
the concurrent estimator by 

L 

Stlt = VLXt-L + ... + V2 X t-2 + VIXt-I + VOXt + ¿ VjXt+jlh 
j=I 

the one-and two-period-ahead forecasts, Stlt-I = Et-ISt and Stlt-2 = Et-2St, 

wiU be given by 
L 

Stlt-I = VLXt-L + ... + V2 X t-2 + VI Xt-I + ¿ VjXt+jlt-I; 
j=O 

L 

Stit = VLXt-L + ... + V2 X t-2 + ¿ VjXt+jlt-2, 
j=-I 

and likewise for other horizons. The discussion on revisions in preliminary 
estimators applies equally to forecasts. A derivation of the estimation errors 
associated with the different types of estimators can be found in Maravall and 
Planas (1998). 

2. U nknown models 

The previous discussion has assumed known models for the unobserved com­
ponents St and nt. Given that observations are only available on their sum Xt, 

quite a bit of "a priori" information on the components has to be introduced 
in order to identify and estimate them. Two approaches to the problem have 
been followed. One, the so-called "Structural Time Series Model" (STSM) 
approach, directly specifies models for the components (and ignores the model 
for the observed series). A trend component, Pt, will typically follow a model 
of the type 

VdPt = Bp( B)apt, 

where d=1,2, and B(B) is of order ::; 2; a seasonal component, St 

SSt = Bs(B)ast. 

(3.42) 

(3.43) 

with Bs(B) also a relatively low order polynomial in B. Irregular components 
are often assumed white noise or perhaps sorne highly transitory ARMA model. 

A limitation of the STSM approach that has often been pointed out is that 
the "a priori" structure imposed on the series may not be appropriate for the 
particular series at hand. This limitation is overcome in the so-called ARIMA 
Model Based (AMB) approach, where the starting point is the identification 
of an ARIMA model for the observed series, a relatively well-known problem, 
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and, from that overall model, the appropriate models for the components are 
derived (there is indeed a close relationship between the STSM and AMB ap­
proaches, see M aravall , 1985. The models for the components will be such 
that their aggregate yields the aggregate model identified for the observations. 
The models obtained for the trend and seasonal components are also of the 
type (3.42) and (3.43) and the decomposition may also yield a white noise or 
a transitory ARMA irregular component. In the applications, we shall use 
the program SEATS ("Signal Extraction in ARIMA Time Series"; Gómez and 
M aravall , 1996). The program originated from the work on AMB decompo­
sition of Burman (1980) and Hillmer and Tiao (1982), done in the context 
of seasonal adjustment, and proceeded along the lines of Maravall (1995) and 
Gómez and Maravall (2000b). 

Although, as we have presented it, the method can be applied to any signal, 
it has been developed in the context of the basic "trend-cycle + seasonal com­
ponent + irregular component" decomposition. A summary of this application 
will prove of help. 

3.5 ARIMA-model-based decomposition of a time se­
rIes 

For the type of quarterly series considered in this work ,we briefiy summarize 
the AMB decomposition method.The method starts by identifying an ARIMA 
model for the observed series. To simplify, assume this model is given by an 
express ion of the type: 

(3.44 ) 

where we assume that the model is invertible. Next, components are de­
rived, such that they conform to the basic features of a trend, a seasonal, 
and an irregular component, and that they aggregate into the observed model 
(3.44). Considering that VV4 factorizes into V 2S, obviously V 2 represents 
the AR <pp(B) polynomial for the trend component, and S represents the AR 
eps( B) polynomial for the seasonal component. The series is seen to contain 
nonstationary trend (or trend-cycle) and seasonal components, and it can be 
decomposed into 

Xt = Pt + St + Ut, (3.45) 

where Pt. St, and Ut denote the trend-cycle, seasonal, and irregular components, 
respectively, the latter being a stationary process. When q (the order of B(B)) 
::; 5, the following models for the components are obtained 

V 2Pt = Bp(B)apt, apt rv niid(O, Yp) 
(3.46) 

55 



Ut '" niid( O, Vu) 
where apt, ast and Ut are mutually uncorrelated white noise variables. We refer 
to (3.46) as the (unobserved component) "structural model" associated with 
the reduced form model (3.44). Applying the operator \7\7 4 to both sides of 
(3.45), the identity 

O(B)at = SOp(B)apt + \720s(B)ast + \7\74Ut (3.47) 

is obtained. If the l.h.s. of (3.47) is an MA(5) process, setting the order of 
Op(B), qp, equal to 2, and that of Os(B), qs, equal to 3, all terms of the sum in 
the r.h.s. of (3.47) are also MA(5)'s. Thus we assume, in general, qp = 2, qs 3 
and equating the AGF of both sides of (3.47), a system of 6 equations is 
obtained (one equation for each nonzero covariance). The unknowns in the 
system are the 2 parameters in Op( B), the 3 parameters in Os( B), plus the 
variances Vp , Vs, and Vui a total of 8 unknowns. There are not enough equations 
to identify the parameters, and hence there is, as a consequence, an infinite 
number of solutions to (3.47). For a more detailed discussion, see Maravall 
and Pierce(1987). 

Denote a solution that implies components as in (3.46) with nonnegative 
spectra an admissible decomposition. The structural model will not be iden­
tified, in general, because an infinite number of admissible decompositions are 
possible. The AMB method solves this underidentification problem by maxi­
mizing the variance of the noise Vu , which implies inducing a zero in the spectra 
of Pt and St in (3.46). The spectral zero translates into a unit root in Op( B) 
and in Os( B), so that the two components Pt and St become noninvertible. 

This particular solution to the identification problem is referred to as the 
"canonical" decomposition (see Box, Hillmer and Tiao, 1978, and Pierce, 
1978); from all infinite solutions of the type (3.46), the canonical one max­
imizes the stability of the trend-cycle and seasonal components that are com­
patible with the model (3.44) for the observed series. Further, the trend-cycle 
and seasonal components for any other admissible decomposition can be ex­
pressed as the canonical ones perturbated by orthogonal white noise. Also, if 
the model accepts an admissible decomposition, then it accepts the canonical 
one (see Hillmer and Tiao, 1982). Notice that, since it should be a decreasing 
function of w in the interval (O, 71'), the spectrum of Pt should display the zero 
at the frequency 71'. Thus the trend-cycle MA polynomial can be factorized as 

Op(B) = (1 + o:B)(1 + B), 

where the root 1 reflects the spectral zero at 71' (see Section 2.5). The zero 
in the spectrum of St may occur at w = O or at a frequency roughly halfway 
bet'ween the two seasonal frequencies w = 71'/2 and w = 71'. 

One simple example may clarify the canonical property. Assume an unob-
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served component model for which the trend follows the random-walk model 

\7Pt = apt, Vp=l. 

This specification is in fact often found in macroeconomic applications of un­
observed component models (Stock and Watson, 1988). Part a) of Figure 3.6 
displays the spectrum of Pt. It is clear that it does not satisfy the canonical 
condition because 

minwgp( w) = gp( 1[') = .25 > O. 

It is straightforward to check that the trend Pt can be decomposed into a 
canonical trend, P;, plus orthogonal white noise Uf, according to 

Pt = P; + Uf, 

where 

\7p; = (1 + B)a;tl 

with Vp • = .25. Part b) of Figure 3.6 shows the spectral decomposition of the 
random walk. The canonical P; is clearly smoother, since it has removed white 
noise from Pt. The spectral zero for w = 1[' of the canonical trend is associated 
with the (l+B) MA polynomial, with unit root B=-l. 

Figure 3.6. Canonical Decompostion of a Random Walk 

...... ............ . ~.~ .. ~~-----------i 

o 1 2 3 
a) Random walk 

- eanonieal trend 
. - eanonieal noise 
... random walk 

.. ~''':'''':'::''':''''...:... .. ,: ........ _ ... _ .. _ . 
o 1 2 3 

b) Canonleal deeomposition 

One relevant property of noninvertible series (and hence, of canonical com­
ponents) is that, due to the spectral zero, no further noise can be extracted 
from them. 

The AMB method computes the trend-cycle, seasonal, and irregular compo­
nent estimators as the MMSE (" optimal") estimators based on the available 
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series X t = [Xl,"" XT], as described in the previous section. Under our 
assumptions, these estimators are also conditional expectations of the type 
E(component I [observed series]), and they are obtained using the WK filter. 
For a series extending from t = -00 to t = 00, that follows model (3.44), 
assume we are interested in estimating a component, which we refer to as the 
"signal" (the signal will be Pt, then St, and finally Ut). Applying result (3.28) 
to the model (3.46), the WK filter for historical estimation of the trend-cycle 
component is equal to the AGF of the model 

()(B)Zt = [()p(B)S]bt, bt f"V niid(O, Yp/Va)i (3.48) 

for the seasonal component it is given by the AGF of 

()(B)Zt = [()s(B)V 2]bt, bt f"V niid(O, Vs/Va)i (3.49) 

and for the irregular component, by the AGF of 

()(B)Zt = VV4bt, bt f"V niid(O, V,./Va). (3.50) 

Notice that this last model is the "inverse" model of (3.44), which is assumed 
known. AIso invertibility of (3.44) guarantees stationarity of the models in 
(3.48)-(3.50), and hence the three WK filters will converge in B and in F. 

For a finite realization, as already mentioned, the optimal estimator of the 
signal is equal to the WK filter applied to the available series extended with 
optimal forecasts and backcasts, obtained with (3.44). This is done with the 
Burman-Wilson algorithm referred to in the previous section. 

The following figures illustrate the procedure. Figure 3.7 shows the spectrum 
of a particular case of model (3.44) and its spectral decomposition into trend, 
seasonal, and irregular components. The trend captures the peak around w = 
O, and the seasonal component the peaks around the seasonal frequencies. 
Figure 3.8 displays the WK filters to obtain the historical estimates of the SA 
series, trend, seasonal and irregular components. From figures 3.8a and b, it is 
seen, for example, that the concurrent estimator of the SA series requires many 
more periods to converge to the historical one than that of the trend. Figure 3.9 
shows the squared gains of the WK filter (see Section 2.6), that is, which part 
of the series variation is passed to, or cut-off from, each component. As seen 
in 3.9c, to estimate the irregular component only the frequencies of no interest 
for the trend or seasonal component will be employed. Figure 3.10a exhibits 
a time series of 100 observations generated with the model of Figure 3.7a, 
and figures 3.l0b,c and d the estimates ntllOO,Pt¡IOO and st!Ioo(t = 1, ... ,100) 
of the trend, seasonal, and irregular components. Figure 3.11 presents the 
standard errors of the estimates of Figure 3.10, moving from concurrent to 
final estimator. The trend estimator converges in ayear, while the SA series 
takes about 3 years for convergen ce. Finally, Figure 3.12 presents the forecast 
function of the original series, trend and seasonal components, as well as the 
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associated 90% probability intervals. 

Figure 3.7. Spectral AMB Decomposition 
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Figure 3.8. Wiener-Kolmogqrov Filters 
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Figure 3.9. Squared Gains 
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Figure 3.10. Series and Estimated Components 
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Figure 3.11. Standard error of estimators 
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3.6 Short-term and long-term trends 

The previous figures serve also to illustrate an important point, often a source 
of confusion, namely, the meaning of a trend component. It is a well-known fact 
that the width of the spectral peak for w = O in parsimonious ARIMA models 
may vary considerably, so that the same will be true for the squared gain of 
the trend estimator. Figure 3.13 shows these squared gains for model (3.19), 
for different combinations of the el and e4 parameters. If the range of cyclical 
frequencies is broadly defined as starting slightly to the right of w = O, and 
finishing slightly to the left of the fundamental frequency (w = 7r /2) (so that 
cycles have periods longer than ayear, yet reasonably bounded), then figure 
3.13 shows how the squared gain of the trend filter may very well extend over 
the range of cyclical frequencies, and even exhibit spill-over effects for higher 
frequencies. This feature is also typical of the squared gains derived from the 
Structural Time Series Model approach (see Harvey, 1989, and Koopman et 
al, 1996), and fram well-known detrending filter such as the Henderson ones 
implemented in the Xll family of programs (see Findley et al, 1998). 
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Squared galn far trend-cycle fllter: dlfferent ARIMA rnadels 

As a consequence, the trend estimators obtained with these pracedures may 
contain a large amount of relatively short-term variation. These short-term 
trend components should be more properly called trend-cycle components. 
The contamination of trend with cyclical frequencies is clearly a result of the 
implicit definition of the trend in the decomposition (3.44). The two compo­
nents that are removed fram the series in order to obtain the trend are the 
seasonal component and the highly transitory (close to white) noise compo­
nent. Therefore, the trend is basically defined as the "noise-free SA series", 
and includes, as a consequence, cyclical frequencies. Its interest rests on the 
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belief that noise, unrelated to the past and to the future, is more disturbing 
than helpful in short-term monitoring of the series. (In fact, SA series and 
trend-cycle components for short-term indicators are both provided at several 
data-producing agencies; see Eurostat, 1999, and Bank of Spain, 1999.) A 
discussion of short-term trends is contained in Maravall (1993). 

Another important area where trends are used is business-cycle analysis. 
Here, the trend is also defined as the detrended and SA series, but the concept 
of detrending is rather different. The aim is to remove a long-term trend that 
does not include movements with periods shorter than a certain number of 
years (roughly, the cutting point is set within the range 8 to 10 years). Having 
defined the band in the frequency range associated with cyclical oscillations 
(for example, those with period between 2 and 10 years), the issue is to de­
sign a "band-pass" filter that permits only the passage of frequencies withín 
that bando Linear filters can only do this job in an approximate manner be­
cause the first derivative with respect to W of their squared gain functíon is 
everywhere well defined, and cannot take the form of an exact rectangle, with 
base the frequency band pass, and height one. The Butterworth family of 
filters were designed to approximate this band-pass features. One of the mem­
bers of the family is very well-known in economics, where it is usually called 
the Hodríck-Prescott (HP) filter (see Hodrick and Prescott, 1980, or Prescott, 
1986). Despite the fact that business cycle estimation is basic to the conduct of 
macroeconomic policy and to monitoring of the economy, many decades of ef­
fort have shown that formal modelling of economic cycles is a frustrating issue. 
As a consequence, applied work and research at economic-policy related insti­
tutions has relied (and still relies) heavily on "ad-hoc" band-pass filters and, in 
particular, in the HP one. One can say that HP filtering of X 11-SA series has 
become the present paradigm for business-cycle estimation in applied work. 
Figure 3.14 represents, for the example of the previous section, the short-term 
trend (or trend-cycle component) obtained with the AMB approach, and the 
long-term trend obtained with the HP-Xll filter. Part a) compares the two 
squared gains, and part b) the two estimated trends. The short-term character 
of the AMB trend and the long-term character of the Xll-HP trend are clearly 
discernible. 

If business-cycle analysts complain that series detrended with short-term 
trends, of the type obtained in the AMB approach, contain very little cycli­
cal information, ad-hoc fixed filters to estimate long-term trends are criticized 
because the trends they yield could be spurious. As seen in Kaiser and Mar­
avall (2000), however, the two types of trends are not in contradiction and 
can be instead quite complementary. When properly used, their mixture can 
incorporate the desirable features of the ad-hoc design, with a sensible and 
complete model-based structure, that fully respects the features of the series 
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at hand. Specifically, the trend-cycle of the AMB decomposition accepts a 
perfectly sensible model-based decomposition into a long-term trend and a 
cyclical component, where these two components are closely related to the HP 
decomposition. The differences, in fact, are those introduced in the Modified 
HP filter of Kaiser and Maravall (1999), and their aim is to improve end-point 
estimation, early detection of turning points, and smoothness of the cyclical 
signal. 

Figure 3.14 
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